本文介绍了如何将RDD [Row]转换为RDD [Vector]的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试使用Scala实现k-means方法.我创建了一个RDD之类的东西

I'm trying to implement k-means method using scala.I created a RDD something like that

val df = sc.parallelize(data).groupByKey().collect().map((chunk)=> {
  sc.parallelize(chunk._2.toSeq).toDF()
})

val examples = df.map(dataframe =>{
  dataframe.selectExpr(
    "avg(time) as avg_time",
    "variance(size) as var_size",
    "variance(time) as var_time",
    "count(size) as examples"
  ).rdd
})

val rdd_final=examples.reduce(_ union _)

val kmeans= new KMeans()
val model = kmeans.run(rdd_final)

使用此代码,我得到一个错误

With this code I obtain an error

type mismatch;
[error]  found   : org.apache.spark.rdd.RDD[org.apache.spark.sql.Row]
[error]  required:org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector]

所以我试着去做:

val rdd_final_Vector = rdd_final.map{x:Row => x.getAs[org.apache.spark.mllib.linalg.Vector](0)}

val model = kmeans.run(rdd_final_Vector)

但是随后我得到一个错误:

But then I obtain an error:

java.lang.ClassCastException: java.lang.Double cannot be cast to org.apache.spark.mllib.linalg.Vector

因此,我正在寻找一种进行该转换的方法,但找不到任何方法.

So I'm looking for a way to do that cast, but I can't find any method.

有什么主意吗?

最诚挚的问候

推荐答案

至少有两个问题:

  1. 您真的不能将行强制转换为向量:行是Spark SQL可以理解的潜在完全不同类型的集合. Vector不是本机Spark sql类型
  2. 您的SQL语句的内容与您尝试使用KMeans实现的内容之间似乎不匹配:SQL正在执行聚合.但是KMeans期望一系列单独的数据点,形式为Vector(封装了Array[Double]).那么,那么-为什么要为KMeans操作提供sumaverage?
  1. No you really can not cast a Row to a Vector: a Row is a collection of potentially disparate types understood by Spark SQL. A Vector is not a native spark sql type
  2. There seems to be a mismatch between the content of your SQL statement and what you are attempting to achieve with KMeans: the SQL is performing aggregations. But KMeans expects a series of individual data points in the form a Vector (which encapsulates an Array[Double]) . So then - why are you supplying sum's and average's to a KMeans operation?

此处仅处理#1:您将需要执行以下操作:

Addressing just #1 here: you will need to do something along the lines of:

val doubVals = <rows rdd>.map{ row =>   row.getDouble("colname") }
val vector = Vectors.toDense{ doubVals.collect}

然后,您将得到一个封装正确的Array[Double](在Vector内),可以将其提供给Kmeans.

Then you have a properly encapsulated Array[Double] (within a Vector) that can be supplied to Kmeans.

这篇关于如何将RDD [Row]转换为RDD [Vector]的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-21 06:49