问题描述
我正在尝试在贪婪解码方法上使用 tf.function
保存模型.
I am trying to save a model using tf.function
on a greedy-decoding method.
代码已按预期在急切模式(调试)下经过测试和工作.但是,它不适用于非急切执行.
The code is tested and works in eager-mode (debug) as expected. However, it is not working in non-eager execution.
该方法获取一个名为 Hyp
的 namedtuple
,如下所示:
The method gets a namedtuple
called Hyp
which looks like this:
Hyp = namedtuple(
'Hyp',
field_names='score, yseq, encoder_state, decoder_state, decoder_output'
)
while 循环的调用方式如下:
The while-loop gets invoked like this:
_, hyp = tf.while_loop(
cond=condition_,
body=body_,
loop_vars=(tf.constant(0, dtype=tf.int32), hyp),
shape_invariants=(
tf.TensorShape([]),
tf.nest.map_structure(get_shape_invariants, hyp),
)
)
这是body_
的相关部分:
def body_(i_, hypothesis_: Hyp):
# [:] Collapsed some code ..
def update_from_next_id_():
return Hyp(
# Update values ..
)
# The only place where I generate a new hypothesis_ namedtuple
hypothesis_ = tf.cond(
tf.not_equal(next_id, blank),
true_fn=lambda: update_from_next_id_(),
false_fn=lambda: hypothesis_
)
return i_ + 1, hypothesis_
我得到的是一个ValueError
:
ValueError: Input tensor 'hypotheses:0' 以形状 () 进入循环,但具有形状 <unknown>经过一次迭代.要允许形状在迭代中变化,请使用 tf.while_loop 的
shape_invariants 参数来指定不太具体的形状.
这里可能有什么问题?
以下是如何为我想要序列化的 tf.function
定义 input_signature
.
The following is how input_signature
is defined for the tf.function
I would like to serialize.
这里,self.greedy_decode_impl
是实际的实现 - 我知道这里有点难看,但是 self.greedy_decode
就是我所说的.
Here, self.greedy_decode_impl
is the actual implementation - I know this is a bit ugly here but self.greedy_decode
is what I am calling.
self.greedy_decode = tf.function(
self.greedy_decode_impl,
input_signature=(
tf.TensorSpec([1, None, self.config.encoder.lstm_units], dtype=tf.float32),
Hyp(
score=tf.TensorSpec([], dtype=tf.float32),
yseq=tf.TensorSpec([1, None], dtype=tf.int32),
encoder_state=tuple(
(tf.TensorSpec([1, lstm.units], dtype=tf.float32),
tf.TensorSpec([1, lstm.units], dtype=tf.float32))
for (lstm, _) in self.encoder_network.lstm_stack
),
decoder_state=tuple(
(tf.TensorSpec([1, lstm.units], dtype=tf.float32),
tf.TensorSpec([1, lstm.units], dtype=tf.float32))
for (lstm, _) in self.predict_network.lstm_stack
),
decoder_output=tf.TensorSpec([1, None, self.config.decoder.lstm_units], dtype=tf.float32)
),
)
)
greedy_decode_impl
的实现:
def greedy_decode_impl(self, encoder_outputs: tf.Tensor, hypotheses: Hyp, blank=0) -> Hyp:
hyp = hypotheses
encoder_outputs = encoder_outputs[0]
def condition_(i_, *_):
time_steps = tf.shape(encoder_outputs)[0]
return tf.less(i_, time_steps)
def body_(i_, hypothesis_: Hyp):
encoder_output_ = tf.reshape(encoder_outputs[i_], shape=(1, 1, -1))
join_out = self.join_network((encoder_output_, hypothesis_.decoder_output), training=False)
logits = tf.squeeze(tf.nn.log_softmax(tf.squeeze(join_out)))
next_id = tf.argmax(logits, output_type=tf.int32)
log_prob = logits[next_id]
next_id = tf.reshape(next_id, (1, 1))
def update_from_next_id_():
decoder_output_, decoder_state_ = self.predict_network(
next_id,
memory_states=hypothesis_.decoder_state,
training=False
)
return Hyp(
score=hypothesis_.score + log_prob,
yseq=tf.concat([hypothesis_.yseq, next_id], axis=0),
decoder_state=decoder_state_,
decoder_output=decoder_output_,
encoder_state=hypothesis_.encoder_state
)
hypothesis_ = tf.cond(
tf.not_equal(next_id, blank),
true_fn=lambda: update_from_next_id_(),
false_fn=lambda: hypothesis_
)
return i_ + 1, hypothesis_
_, hyp = tf.while_loop(
cond=condition_,
body=body_,
loop_vars=(tf.constant(0, dtype=tf.int32), hyp),
shape_invariants=(
tf.TensorShape([]),
tf.nest.map_structure(get_shape_invariants, hyp),
)
)
return hyp
为什么它在 Eager 模式下有效,而在非 Eager 模式下无效?
Why does it work in eager-mode but not in non-eager?
根据 tf 的文档.while_loop
一个 namedtuple
应该可以使用.
According to the docs of tf.while_loop
a namedtuple
should be alright to use.
为了检查这是否适用于 namedtuple
,我使用类似的机制实现了斐波那契数列.为了包含条件,循环在到达步骤 n//2
时停止追加新数字:
In order to check whether this should work with a namedtuple
, I have implemented the fibonacci sequence using similar mechanisms. In order to include a condition, the loop stops appending new numbers when reaching step n // 2
:
正如我们在下面看到的,该方法应该可以在没有 Python 副作用的情况下工作.
As we can see below, the approach should work without Python side-effects.
from collections import namedtuple
import tensorflow as tf
FibonacciStep = namedtuple('FibonacciStep', field_names='seq, prev_value')
def shape_list(x):
static = x.shape.as_list()
dynamic = tf.shape(x)
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
def get_shape_invariants(tensor):
shapes = shape_list(tensor)
return tf.TensorShape([i if isinstance(i, int) else None for i in shapes])
def save_tflite(fp, concrete_fn):
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_fn])
converter.experimental_new_converter = True
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
converter.optimizations = []
tflite_model = converter.convert()
with tf.io.gfile.GFile(fp, 'wb') as f:
f.write(tflite_model)
@tf.function(
input_signature=(
tf.TensorSpec([], dtype=tf.int32),
FibonacciStep(
seq=tf.TensorSpec([1, None], dtype=tf.int32),
prev_value=tf.TensorSpec([], dtype=tf.int32),
)
)
)
def fibonacci(n: tf.Tensor, fibo: FibonacciStep):
def cond_(i_, *args):
return tf.less(i_, n)
def body_(i_, fibo_: FibonacciStep):
prev_value = fibo_.seq[0, -1] + fibo_.prev_value
def append_value():
return FibonacciStep(
seq=tf.concat([fibo_.seq, tf.reshape(prev_value, shape=(1, 1))], axis=-1),
prev_value=fibo_.seq[0, -1]
)
fibo_ = tf.cond(
tf.less_equal(i_, n // 2),
true_fn=lambda: append_value(),
false_fn=lambda: fibo_
)
return i_ + 1, fibo_
_, fibo = tf.while_loop(
cond=cond_,
body=body_,
loop_vars=(0, fibo),
shape_invariants=(
tf.TensorShape([]),
tf.nest.map_structure(get_shape_invariants, fibo),
)
)
return fibo
def main():
n = tf.constant(10, dtype=tf.int32)
fibo = FibonacciStep(
seq=tf.constant([[0, 1]], dtype=tf.int32),
prev_value=tf.constant(0, dtype=tf.int32),
)
fibo = fibonacci(n, fibo=fibo)
fibo = fibonacci(n + 10, fibo=fibo)
fp = '/tmp/fibonacci.tflite'
concrete_fn = fibonacci.get_concrete_function()
save_tflite(fp, concrete_fn)
print(fibo.seq.numpy()[0].tolist())
print('All done.')
if __name__ == '__main__':
main()
输出:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584]
All done.
推荐答案
好吧,事实证明
tf.concat([hypothesis_.yseq, next_id], axis=0),
应该是
tf.concat([hypothesis_.yseq, next_id], axis=-1),
公平地说,错误消息有点给了你一个提示,但有用"的地方.描述它太多了.我通过在错误的轴上连接而违反了 TensorSpec
,仅此而已,但 Tensorflow 无法直接指向受影响的 Tensor(目前).
To be fair, the error message kind of gives you a hint where to look but "helpful" would be too much to describe it. I violated the TensorSpec
by concatenating over the wrong axis, that's all, but Tensorflow is not able to point directly at the affected Tensor (yet).
这篇关于输入张量 <name>以形状 () 进入循环,但形状为 <unknown>一次迭代后的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!