问题描述
我尝试利用python的池多处理功能.
I try to utilize the pool multiprocessing functionality of python.
独立于我如何设置块大小(在Windows 7和Ubuntu下-后者在下面有4个内核),并行线程的数量似乎保持不变.
Independent how I set the chunk size (under Windows 7 and Ubuntu - the latter see below with 4 cores), the amount of parallel threads seems to stay the same.
from multiprocessing import Pool
from multiprocessing import cpu_count
import multiprocessing
import time
def f(x):
print("ready to sleep", x, multiprocessing.current_process())
time.sleep(20)
print("slept with:", x, multiprocessing.current_process())
if __name__ == '__main__':
processes = cpu_count()
print('-' * 20)
print('Utilizing %d cores' % processes)
print('-' * 20)
pool = Pool(processes)
myList = []
runner = 0
while runner < 40:
myList.append(runner)
runner += 1
print("len(myList):", len(myList))
# chunksize = int(len(myList) / processes)
# chunksize = processes
chunksize = 1
print("chunksize:", chunksize)
pool.map(f, myList, 1)
无论我使用chunksize = int(len(myList) / processes)
,chunksize = processes
还是1
,行为都是相同的(如上例所示).
The behaviour is the same whether I use chunksize = int(len(myList) / processes)
, chunksize = processes
or 1
(as in the example above).
是否可以将块大小自动设置为核心数量?
Could it be that the chunksize is set automatically to the amount of cores?
chunksize = 1
的示例:
--------------------
Utilizing 4 cores
--------------------
len(myList): 40
chunksize: 10
ready to sleep 0 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 1 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 2 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 3 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 0 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 4 <ForkProcess(ForkPoolWorker-1, started daemon)>
slept with: 1 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 5 <ForkProcess(ForkPoolWorker-2, started daemon)>
slept with: 2 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 6 <ForkProcess(ForkPoolWorker-3, started daemon)>
slept with: 3 <ForkProcess(ForkPoolWorker-4, started daemon)>
ready to sleep 7 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 4 <ForkProcess(ForkPoolWorker-1, started daemon)>
ready to sleep 8 <ForkProcess(ForkPoolWorker-1, started daemon)>
slept with: 5 <ForkProcess(ForkPoolWorker-2, started daemon)>
ready to sleep 9 <ForkProcess(ForkPoolWorker-2, started daemon)>
slept with: 6 <ForkProcess(ForkPoolWorker-3, started daemon)>
ready to sleep 10 <ForkProcess(ForkPoolWorker-3, started daemon)>
slept with: 7 <ForkProcess(ForkPoolWorker-4, started daemon)>
ready to sleep 11 <ForkProcess(ForkPoolWorker-4, started daemon)>
slept with: 8 <ForkProcess(ForkPoolWorker-1, started daemon)>
推荐答案
Chunksize不会影响正在使用的内核数,这是由Pool
的processes
参数设置的. Chunksize设置您传递给Pool.map
的可迭代项的数量,在Pool
称为任务"的每个工作进程中一次分配(下图显示了Python 3.7.1)
Chunksize doesn't influence how many cores are getting used, this is set by the processes
parameter of Pool
. Chunksize sets how many items of the iterable you pass to Pool.map
, are distributed per single worker-process at once in what Pool
calls a "task" (figure below shows Python 3.7.1).
如果设置了chunksize=1
,则只有在完成之前收到的工作后,才能在新任务中为工人进程提供新的项目.对于chunksize > 1
,工人在一个任务中一次获取整批物品,完成后,如果还有剩余,则获得下一批.
In case you set chunksize=1
, a worker-process gets fed with a new item, in a new task, only after finishing the one received before. For chunksize > 1
a worker gets a whole batch of items at once within a task and when it's finished, it gets the next batch if there are any left.
使用chunksize=1
一对一分发项目增加了调度的灵活性,同时降低了总体吞吐量,因为滴灌需要更多的进程间通信(IPC).
Distributing items one-by-one with chunksize=1
increases flexibility of scheduling while it decreases overall throughput, because drip feeding requires more inter-process communication (IPC).
在对Pool的chunksize-algorithm的深入分析中,在此,我定义了工作单元,用于将可迭代的一个项目处理为 taskel ,以避免与Pool使用任务"一词的命名发生冲突.一项任务(作为工作单元)由chunksize
个任务组组成.
In my in-depth analysis of Pool's chunksize-algorithm here, I define the unit of work for processing one item of the iterable as taskel, to avoid naming conflicts with Pool's usage of the word "task". A task (as unit of work) consists of chunksize
taskels.
如果您无法预测任务需要完成多长时间(例如优化问题),则设置chunksize=1
.此处滴灌可防止工人流程坐在一堆未接触的物品上,而在一个沉重的任务板上el缩时,可防止任务中的其他物品分配到闲置的工人流程中.
You would set chunksize=1
if you cannot predict how long a taskel will need to finish, for example an optimization problem, where the processing time greatly varies across taskels. Drip-feeding here prevents a worker-process sitting on a pile of untouched items, while chrunching on one heavy taskel, preventing the other items in his task to be distributed to idling worker-processes.
否则,如果所有任务组都需要相同的时间才能完成,则可以设置chunksize=len(iterable) // processes
,这样任务就只能在所有工作进程中分配一次.请注意,如果len(iterable) / processes
有余数,这将产生比进程(进程+ 1)多的任务.这有可能严重影响您的整体计算时间.在先前链接的答案中了解有关此内容的更多信息.
Otherwise, if all your taskels will need the same time to finish, you can set chunksize=len(iterable) // processes
, so that tasks are only distributed once across all workers. Note that this will produce one more task than there are processes (processes + 1) in case len(iterable) / processes
has a remainder. This has the potential to severely impact your overall computation time. Read more about this in the previously linked answer.
仅供参考,这是源代码的一部分,其中Pool
如果未设置,则内部计算块大小:
FYI, that's the part of source code where Pool
internally calculates the chunksize if not set:
# Python 3.6, line 378 in `multiprocessing.pool.py`
if chunksize is None:
chunksize, extra = divmod(len(iterable), len(self._pool) * 4)
if extra:
chunksize += 1
if len(iterable) == 0:
chunksize = 0
这篇关于与Python中的multiprocessing/pool.map无关的块大小?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!