前提
之前写的几篇文章里面其中一篇曾经提到过Canal
解析MySQL
的binlog
事件后的对象如下(来源于Canal
源码com.alibaba.otter.canal.protocol.FlatMessage
):
如果直接对此原始对象进行解析,那么会出现很多解析模板代码,一旦有改动就会牵一发动全身,这是我们不希望发生的一件事。于是花了一点点时间写了一个Canal
胶水层,让接收到的FlatMessage
根据表名称直接转换为对应的DTO
实例,这样能在一定程度上提升开发效率并且减少模板化代码,这个胶水层的数据流示意图如下:
要编写这样的胶水层主要用到:
- 反射。
- 注解。
- 策略模式。
IOC
容器(可选)。
项目的模块如下:
canal-glue-core
:核心功能。spring-boot-starter-canal-glue
:适配Spring
的IOC
容器,添加自动配置。canal-glue-example
:使用例子和基准测试。
下文会详细分析此胶水层如何实现。
引入依赖
为了不污染引用此模块的外部服务依赖,除了JSON
转换的依赖之外,其他依赖的scope
定义为provide
或者test
类型,依赖版本和BOM
如下:
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<spring.boot.version>2.3.0.RELEASE</spring.boot.version>
<maven.compiler.plugin.version>3.8.1</maven.compiler.plugin.version>
<lombok.version>1.18.12</lombok.version>
<fastjson.version>1.2.73</fastjson.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-dependencies</artifactId>
<version>${spring.boot.version}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>${lombok.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>${fastjson.version}</version>
</dependency>
</dependencies>
其中,canal-glue-core
模块本质上只依赖于fastjson
,可以完全脱离spring
体系使用。
基本架构
这里提供一个"后知后觉"的架构图,因为之前为了快速怼到线上,初版没有考虑这么多,甚至还耦合了业务代码,组件是后来抽离出来的:
设计配置模块(已经移除)
当初是想快速进行胶水层的开发,所以配置文件使用了可读性比较高的JSON
格式:
{
"version": 1,
"module": "canal-glue",
"databases": [
{
"database": "db_payment_service",
"processors": [
{
"table": "payment_order",
"processor": "x.y.z.PaymentOrderProcessor",
"exceptionHandler": "x.y.z.PaymentOrderExceptionHandler"
}
]
},
{
......
}
]
}
因为使用该模块的应用有可能需要处理Canal
解析多个上游数据库的binlog
事件,所以配置模块设计的时候需要以database
为KEY
,挂载多个table
以及对应的表binlog
事件处理器以及异常处理器。然后对着JSON
文件的格式撸一遍对应的实体类出来:
@Data
public class CanalGlueProcessorConf {
private String table;
private String processor;
private String exceptionHandler;
}
@Data
public class CanalGlueDatabaseConf {
private String database;
private List<CanalGlueProcessorConf> processors;
}
@Data
public class CanalGlueConf {
private Long version;
private String module;
private List<CanalGlueDatabaseConf> database;
}
实体编写完,接着可以编写一个配置加载器,简单起见,配置文件直接放ClassPath
之下,加载器如下:
public interface CanalGlueConfLoader {
CanalGlueConf load(String location);
}
// 实现
public class ClassPathCanalGlueConfLoader implements CanalGlueConfLoader {
@Override
public CanalGlueConf load(String location) {
ClassPathResource resource = new ClassPathResource(location);
Assert.isTrue(resource.exists(), String.format("类路径下不存在文件%s", location));
try {
String content = StreamUtils.copyToString(resource.getInputStream(), StandardCharsets.UTF_8);
return JSON.parseObject(content, CanalGlueConf.class);
} catch (IOException e) {
// should not reach
throw new IllegalStateException(e);
}
}
}
读取ClassPath
下的某个location
为绝对路径的文件内容字符串,然后使用Fasfjson
转成CanalGlueConf
对象。这个是默认的实现,使用canal-glue
模块可以覆盖此实现,通过自定义的实现加载配置。
核心模块开发
主要包括几个模块:
- 基本模型定义。
- 适配器层开发。
- 转换器和解析器层开发。
- 处理器层开发。
- 全局组件自动配置模块开发(仅限于
Spring
体系,已经抽取到spring-boot-starter-canal-glue
模块)。 CanalGlue
开发。
基本模型定义
定义顶层的KEY
,也就是对于某个数据库的某一个确定的表,需要一个唯一标识:
// 模型表对象
public interface ModelTable {
String database();
String table();
static ModelTable of(String database, String table) {
return DefaultModelTable.of(database, table);
}
}
@RequiredArgsConstructor(access = AccessLevel.PACKAGE, staticName = "of")
public class DefaultModelTable implements ModelTable {
private final String database;
private final String table;
@Override
public String database() {
return database;
}
@Override
public String table() {
return table;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
DefaultModelTable that = (DefaultModelTable) o;
return Objects.equals(database, that.database) &&
Objects.equals(table, that.table);
}
@Override
public int hashCode() {
return Objects.hash(database, table);
}
}
这里实现类DefaultModelTable
重写了equals()
和hashCode()
方法便于把ModelTable
实例应用为HashMap
容器的KEY
,这样后面就可以设计ModelTable -> Processor
的缓存结构。
由于Canal
投放到Kafka
的事件内容是一个原始字符串,所以要定义一个和前文提到的FlatMessage
基本一致的事件类CanalBinLogEvent
:
@Data
public class CanalBinLogEvent {
/**
* 事件ID,没有实际意义
*/
private Long id;
/**
* 当前更变后节点数据
*/
private List<Map<String, String>> data;
/**
* 主键列名称列表
*/
private List<String> pkNames;
/**
* 当前更变前节点数据
*/
private List<Map<String, String>> old;
/**
* 类型 UPDATE\INSERT\DELETE\QUERY
*/
private String type;
/**
* binlog execute time
*/
private Long es;
/**
* dml build timestamp
*/
private Long ts;
/**
* 执行的sql,不一定存在
*/
private String sql;
/**
* 数据库名称
*/
private String database;
/**
* 表名称
*/
private String table;
/**
* SQL类型映射
*/
private Map<String, Integer> sqlType;
/**
* MySQL字段类型映射
*/
private Map<String, String> mysqlType;
/**
* 是否DDL
*/
private Boolean isDdl;
}
根据此事件对象,再定义解析完毕后的结果对象CanalBinLogResult
:
// 常量
@RequiredArgsConstructor
@Getter
public enum BinLogEventType {
QUERY("QUERY", "查询"),
INSERT("INSERT", "新增"),
UPDATE("UPDATE", "更新"),
DELETE("DELETE", "删除"),
ALTER("ALTER", "列修改操作"),
UNKNOWN("UNKNOWN", "未知"),
;
private final String type;
private final String description;
public static BinLogEventType fromType(String type) {
for (BinLogEventType binLogType : BinLogEventType.values()) {
if (binLogType.getType().equals(type)) {
return binLogType;
}
}
return BinLogEventType.UNKNOWN;
}
}
// 常量
@RequiredArgsConstructor
@Getter
public enum OperationType {
/**
* DML
*/
DML("dml", "DML语句"),
/**
* DDL
*/
DDL("ddl", "DDL语句"),
;
private final String type;
private final String description;
}
@Data
public class CanalBinLogResult<T> {
/**
* 提取的长整型主键
*/
private Long primaryKey;
/**
* binlog事件类型
*/
private BinLogEventType binLogEventType;
/**
* 更变前的数据
*/
private T beforeData;
/**
* 更变后的数据
*/
private T afterData;
/**
* 数据库名称
*/
private String databaseName;
/**
* 表名称
*/
private String tableName;
/**
* sql语句 - 一般是DDL的时候有用
*/
private String sql;
/**
* MySQL操作类型
*/
private OperationType operationType;
}
开发适配器层
定义顶层的适配器SPI
接口:
public interface SourceAdapter<SOURCE, SINK> {
SINK adapt(SOURCE source);
}
接着开发适配器实现类:
// 原始字符串直接返回
@RequiredArgsConstructor(access = AccessLevel.PACKAGE, staticName = "of")
class RawStringSourceAdapter implements SourceAdapter<String, String> {
@Override
public String adapt(String source) {
return source;
}
}
// Fastjson转换
@RequiredArgsConstructor(access = AccessLevel.PACKAGE, staticName = "of")
class FastJsonSourceAdapter<T> implements SourceAdapter<String, T> {
private final Class<T> klass;
@Override
public T adapt(String source) {
if (StringUtils.isEmpty(source)) {
return null;
}
return JSON.parseObject(source, klass);
}
}
// Facade
public enum SourceAdapterFacade {
/**
* 单例
*/
X;
private static final SourceAdapter<String, String> I_S_A = RawStringSourceAdapter.of();
@SuppressWarnings("unchecked")
public <T> T adapt(Class<T> klass, String source) {
if (klass.isAssignableFrom(String.class)) {
return (T) I_S_A.adapt(source);
}
return FastJsonSourceAdapter.of(klass).adapt(source);
}
}
最终直接使用SourceAdapterFacade#adapt()
方法即可,因为实际上绝大多数情况下只会使用原始字符串和String -> Class实例
,适配器层设计可以简单点。
开发转换器和解析器层
对于Canal
解析完成的binlog
事件,data
和old
属性是K-V
结构,并且KEY
都是String
类型,需要遍历解析才能推导出完整的目标实例。
为了更好地通过目标实体和实际的数据库、表和列名称、列类型进行映射,引入了两个自定义注解CanalModel
和@CanalField
,它们的定义如下:
// @CanalModel
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface CanalModel {
/**
* 目标数据库
*/
String database();
/**
* 目标表
*/
String table();
/**
* 属性名 -> 列名命名转换策略,可选值有:DEFAULT(原始)、UPPER_UNDERSCORE(驼峰转下划线大写)和LOWER_UNDERSCORE(驼峰转下划线小写)
*/
FieldNamingPolicy fieldNamingPolicy() default FieldNamingPolicy.DEFAULT;
}
// @CanalField
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
public @interface CanalField {
/**
* 行名称
*
* @return columnName
*/
String columnName() default "";
/**
* sql字段类型
*
* @return JDBCType
*/
JDBCType sqlType() default JDBCType.NULL;
/**
* 转换器类型
*
* @return klass
*/
Class<? extends BaseCanalFieldConverter<?>> converterKlass() default NullCanalFieldConverter.class;
}
定义顶层转换器接口BinLogFieldConverter
:
public interface BinLogFieldConverter<SOURCE, TARGET> {
TARGET convert(SOURCE source);
}
目前暂定可以通过目标属性的Class
和通过注解指定的SQLType
类型进行匹配,所以再定义一个抽象转换器BaseCanalFieldConverter
:
public abstract class BaseCanalFieldConverter<T> implements BinLogFieldConverter<String, T> {
private final SQLType sqlType;
private final Class<?> klass;
protected BaseCanalFieldConverter(SQLType sqlType, Class<?> klass) {
this.sqlType = sqlType;
this.klass = klass;
}
@Override
public T convert(String source) {
if (StringUtils.isEmpty(source)) {
return null;
}
return convertInternal(source);
}
/**
* 内部转换方法
*
* @param source 源字符串
* @return T
*/
protected abstract T convertInternal(String source);
/**
* 返回SQL类型
*
* @return SQLType
*/
public SQLType sqlType() {
return sqlType;
}
/**
* 返回类型
*
* @return Class<?>
*/
public Class<?> typeKlass() {
return klass;
}
}
BaseCanalFieldConverter
是面向目标实例中的单个属性的,例如对于实例中的Long
类型的属性,可以实现一个BigIntCanalFieldConverter
:
public class BigIntCanalFieldConverter extends BaseCanalFieldConverter<Long> {
/**
* 单例
*/
public static final BaseCanalFieldConverter<Long> X = new BigIntCanalFieldConverter();
private BigIntCanalFieldConverter() {
super(JDBCType.BIGINT, Long.class);
}
@Override
protected Long convertInternal(String source) {
if (null == source) {
return null;
}
return Long.valueOf(source);
}
}
其他类型以此类推,目前已经开发好的最常用的内建转换器如下:
所有转换器实现都设计为无状态的单例,方便做动态注册和覆盖。接着定义一个转换器工厂CanalFieldConverterFactory
,提供API
通过指定参数加载目标转换器实例:
// 入参
@SuppressWarnings("rawtypes")
@Builder
@Data
public class CanalFieldConvertInput {
private Class<?> fieldKlass;
private Class<? extends BaseCanalFieldConverter> converterKlass;
private SQLType sqlType;
@Tolerate
public CanalFieldConvertInput() {
}
}
// 结果
@Builder
@Getter
public class CanalFieldConvertResult {
private final BaseCanalFieldConverter<?> converter;
}
// 接口
public interface CanalFieldConverterFactory {
default void registerConverter(BaseCanalFieldConverter<?> converter) {
registerConverter(converter, true);
}
void registerConverter(BaseCanalFieldConverter<?> converter, boolean replace);
CanalFieldConvertResult load(CanalFieldConvertInput input);
}
CanalFieldConverterFactory
提供了可以注册自定义转化器的registerConverter()
方法,这样就可以让使用者注册自定义的转换器和覆盖默认的转换器。
至此,可以通过指定的参数,加载实例属性的转换器,拿到转换器实例,就可以针对目标实例,从原始事件中解析对应的K-V
结构。接着需要编写最核心的解析器模块,此模块主要包含三个方面:
- 唯一
BIGINT
类型主键的解析(这一点是公司技术规范的一条铁规则,MySQL
每个表只能定义唯一的BIGINT UNSIGNED
自增趋势主键)。 - 更变前的数据,对应于原始事件中的
old
属性节点(不一定存在,例如INSERT
语句中不存在此属性节点)。 - 更变后的数据,对应于原始事件中的
data
属性节点。
定义解析器接口CanalBinLogEventParser
如下:
public interface CanalBinLogEventParser {
/**
* 解析binlog事件
*
* @param event 事件
* @param klass 目标类型
* @param primaryKeyFunction 主键映射方法
* @param commonEntryFunction 其他属性映射方法
* @return CanalBinLogResult
*/
<T> List<CanalBinLogResult<T>> parse(CanalBinLogEvent event,
Class<T> klass,
BasePrimaryKeyTupleFunction primaryKeyFunction,
BaseCommonEntryFunction<T> commonEntryFunction);
}
解析器的解析方法依赖于:
binlog
事件实例,这个是上游的适配器组件的结果。- 转换的目标类型。
BasePrimaryKeyTupleFunction
主键映射方法实例,默认使用内建的BigIntPrimaryKeyTupleFunction
。BaseCommonEntryFunction
非主键通用列-属性映射方法实例,默认使用内建的ReflectionBinLogEntryFunction
(这个是非主键列的转换核心,里面使用到了反射)。
解析返回结果是一个List
,原因是FlatMessage
在批量写入的时候的数据结构本来就是一个List<Map<String,String>>
,这里只是"顺水推舟"。
开发处理器层
处理器是开发者处理最终解析出来的实体的入口,只需要面向不同类型的事件选择对应的处理方法即可,看起来如下:
public abstract class BaseCanalBinlogEventProcessor<T> extends BaseParameterizedTypeReferenceSupport<T> {
protected void processInsertInternal(CanalBinLogResult<T> result) {
}
protected void processUpdateInternal(CanalBinLogResult<T> result) {
}
protected void processDeleteInternal(CanalBinLogResult<T> result) {
}
protected void processDDLInternal(CanalBinLogResult<T> result) {
}
}
例如需要处理Insert
事件,则子类继承BaseCanalBinlogEventProcessor
,对应的实体类(泛型的替换)使用@CanalModel
注解声明,然后覆盖processInsertInternal()
方法即可。期间子处理器可以覆盖自定义异常处理器实例,如:
@Override
protected ExceptionHandler exceptionHandler() {
return EXCEPTION_HANDLER;
}
/**
* 覆盖默认的ExceptionHandler.NO_OP
*/
private static final ExceptionHandler EXCEPTION_HANDLER = (event, throwable)
-> log.error("解析binlog事件出现异常,事件内容:{}", JSON.toJSONString(event), throwable);
另外,有些场景需要对回调前或者回调后的结果做特化处理,因此引入了解析结果拦截器(链)的实现,对应的类是BaseParseResultInterceptor
:
public abstract class BaseParseResultInterceptor<T> extends BaseParameterizedTypeReferenceSupport<T> {
public BaseParseResultInterceptor() {
super();
}
public void onParse(ModelTable modelTable) {
}
public void onBeforeInsertProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onAfterInsertProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onBeforeUpdateProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onAfterUpdateProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onBeforeDeleteProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onAfterDeleteProcess(ModelTable modelTable, T beforeData, T afterData) {
}
public void onBeforeDDLProcess(ModelTable modelTable, T beforeData, T afterData, String sql) {
}
public void onAfterDDLProcess(ModelTable modelTable, T beforeData, T afterData, String sql) {
}
public void onParseFinish(ModelTable modelTable) {
}
public void onParseCompletion(ModelTable modelTable) {
}
}
解析结果拦截器的回调时机可以参看上面的架构图或者BaseCanalBinlogEventProcessor
的源代码。
开发全局组件自动配置模块
如果使用了Spring
容器,需要添加一个配置类来加载所有既有的组件,添加一个全局配置类CanalGlueAutoConfiguration
(这个类可以在项目的spring-boot-starter-canal-glue
模块中看到,这个模块就只有一个类):
@Configuration
public class CanalGlueAutoConfiguration implements SmartInitializingSingleton, BeanFactoryAware {
private ConfigurableListableBeanFactory configurableListableBeanFactory;
@Bean
@ConditionalOnMissingBean
public CanalBinlogEventProcessorFactory canalBinlogEventProcessorFactory() {
return InMemoryCanalBinlogEventProcessorFactory.of();
}
@Bean
@ConditionalOnMissingBean
public ModelTableMetadataManager modelTableMetadataManager(CanalFieldConverterFactory canalFieldConverterFactory) {
return InMemoryModelTableMetadataManager.of(canalFieldConverterFactory);
}
@Bean
@ConditionalOnMissingBean
public CanalFieldConverterFactory canalFieldConverterFactory() {
return InMemoryCanalFieldConverterFactory.of();
}
@Bean
@ConditionalOnMissingBean
public CanalBinLogEventParser canalBinLogEventParser() {
return DefaultCanalBinLogEventParser.of();
}
@Bean
@ConditionalOnMissingBean
public ParseResultInterceptorManager parseResultInterceptorManager(ModelTableMetadataManager modelTableMetadataManager) {
return InMemoryParseResultInterceptorManager.of(modelTableMetadataManager);
}
@Bean
@Primary
public CanalGlue canalGlue(CanalBinlogEventProcessorFactory canalBinlogEventProcessorFactory) {
return DefaultCanalGlue.of(canalBinlogEventProcessorFactory);
}
@Override
public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
this.configurableListableBeanFactory = (ConfigurableListableBeanFactory) beanFactory;
}
@SuppressWarnings({"rawtypes", "unchecked"})
@Override
public void afterSingletonsInstantiated() {
ParseResultInterceptorManager parseResultInterceptorManager
= configurableListableBeanFactory.getBean(ParseResultInterceptorManager.class);
ModelTableMetadataManager modelTableMetadataManager
= configurableListableBeanFactory.getBean(ModelTableMetadataManager.class);
CanalBinlogEventProcessorFactory canalBinlogEventProcessorFactory
= configurableListableBeanFactory.getBean(CanalBinlogEventProcessorFactory.class);
CanalBinLogEventParser canalBinLogEventParser
= configurableListableBeanFactory.getBean(CanalBinLogEventParser.class);
Map<String, BaseParseResultInterceptor> interceptors
= configurableListableBeanFactory.getBeansOfType(BaseParseResultInterceptor.class);
interceptors.forEach((k, interceptor) -> parseResultInterceptorManager.registerParseResultInterceptor(interceptor));
Map<String, BaseCanalBinlogEventProcessor> processors
= configurableListableBeanFactory.getBeansOfType(BaseCanalBinlogEventProcessor.class);
processors.forEach((k, processor) -> processor.init(canalBinLogEventParser, modelTableMetadataManager,
canalBinlogEventProcessorFactory, parseResultInterceptorManager));
}
}
为了更好地让其他服务引入此配置类,可以使用spring.factories
的特性。新建resources/META-INF/spring.factories
文件,内容如下:
org.springframework.boot.autoconfigure.EnableAutoConfiguration=cn.throwx.canal.gule.config.CanalGlueAutoConfiguration
这样子通过引入spring-boot-starter-canal-glue
就可以激活所有用到的组件并且初始化所有已经添加到Spring
容器中的处理器。
CanalGlue开发
CanalGlue
其实就是提供binlog
事件字符串的处理入口,目前定义为一个接口:
public interface CanalGlue {
void process(String content);
}
此接口的实现DefaultCanalGlue
也十分简单:
@RequiredArgsConstructor(access = AccessLevel.PUBLIC, staticName = "of")
public class DefaultCanalGlue implements CanalGlue {
private final CanalBinlogEventProcessorFactory canalBinlogEventProcessorFactory;
@Override
public void process(String content) {
CanalBinLogEvent event = SourceAdapterFacade.X.adapt(CanalBinLogEvent.class, content);
ModelTable modelTable = ModelTable.of(event.getDatabase(), event.getTable());
canalBinlogEventProcessorFactory.get(modelTable).forEach(processor -> processor.process(event));
}
}
使用源适配器把字符串转换为CanalBinLogEvent
实例,再委托处理器工厂寻找对应的BaseCanalBinlogEventProcessor
列表去处理输入的事件实例。
使用canal-glue
主要包括下面几个维度,都在canal-glue-example
的test
包下:
- [x] 一般情况下使用处理器处理
INSERT
事件。 - [x] 自定义针对
DDL
变更的预警父处理器,实现DDL
变更预警。 - [x] 单表对应多个处理器。
- [x] 使用解析结果处理器针对特定字段进行
AES
加解密处理。 - [x] 非
Spring
容器下,一般编程式使用。 - [ ] 使用
openjdk-jmh
进行Benchmark
基准性能测试。
这里简单提一下在Spring
体系下的使用方式,引入依赖spring-boot-starter-canal-glue
:
<dependency>
<groupId>cn.throwx</groupId>
<artifactId>spring-boot-starter-canal-glue</artifactId>
<version>版本号</version>
</dependency>
编写一个实体或者DTO
类OrderModel
:
@Data
@CanalModel(database = "db_order_service", table = "t_order", fieldNamingPolicy = FieldNamingPolicy.LOWER_UNDERSCORE)
public static class OrderModel {
private Long id;
private String orderId;
private OffsetDateTime createTime;
private BigDecimal amount;
}
这里使用了@CanalModel
注解绑定了数据库db_order_service
和表t_order
,属性名-列名映射策略为驼峰转小写下划线。接着定义一个处理器OrderProcessor
和自定义异常处理器(可选,这里是为了模拟在处理事件的时候抛出自定义异常):
@Component
public class OrderProcessor extends BaseCanalBinlogEventProcessor<OrderModel> {
@Override
protected void processInsertInternal(CanalBinLogResult<OrderModel> result) {
OrderModel orderModel = result.getAfterData();
logger.info("接收到订单保存binlog,主键:{},模拟抛出异常...", orderModel.getId());
throw new RuntimeException(String.format("[id:%d]", orderModel.getId()));
}
@Override
protected ExceptionHandler exceptionHandler() {
return EXCEPTION_HANDLER;
}
/**
* 覆盖默认的ExceptionHandler.NO_OP
*/
private static final ExceptionHandler EXCEPTION_HANDLER = (event, throwable)
-> log.error("解析binlog事件出现异常,事件内容:{}", JSON.toJSONString(event), throwable);
}
假设一个写入订单数据的binlog
事件如下:
{
"data": [
{
"id": "1",
"order_id": "10086",
"amount": "999.0",
"create_time": "2020-03-02 05:12:49"
}
],
"database": "db_order_service",
"es": 1583143969000,
"id": 3,
"isDdl": false,
"mysqlType": {
"id": "BIGINT",
"order_id": "VARCHAR(64)",
"amount": "DECIMAL(10,2)",
"create_time": "DATETIME"
},
"old": null,
"pkNames": [
"id"
],
"sql": "",
"sqlType": {
"id": -5,
"order_id": 12,
"amount": 3,
"create_time": 93
},
"table": "t_order",
"ts": 1583143969460,
"type": "INSERT"
}
执行结果如下:
如果直接对接Canal
投放到Kafka
的Topic
也很简单,配合Kafka
的消费者使用的示例如下:
@Slf4j
@Component
@RequiredArgsConstructor
public class CanalEventListeners {
private final CanalGlue canalGlue;
@KafkaListener(
id = "${canal.event.order.listener.id:db-order-service-listener}",
topics = "db_order_service",
containerFactory = "kafkaListenerContainerFactory"
)
public void onCrmMessage(String content) {
canalGlue.process(content);
}
}
小结
笔者开发这个canal-glue
的初衷是需要做一个极大提升效率的大型字符串转换器,因为刚刚接触到"小数据"领域,而且人手不足,而且需要处理下游大量的报表,因为不可能花大量人力在处理这些不停重复的模板化代码上。虽然整体设计还不是十分优雅,至少在提升开发效率这个点上,canal-glue
做到了。
项目仓库:
Gitee
:https://gitee.com/throwableDoge/canal-glue
仓库最新代码暂时放在develop
分支。
(本文完 c-15-d e-a-20201005 鸽了快一个月)