问题描述
我正在尝试制作颠簸图(例如平行坐标,但要使用序数x轴)以显示随时间变化的排名.我可以很容易地制作一条直线图:
I'm trying to make a bumps chart (like parallel coordinates but with an ordinal x-axis) to show ranking over time. I can make a straight-line chart very easily:
library(ggplot2)
set.seed(47)
df <- as.data.frame(as.table(replicate(8, sample(4))), responseName = 'rank')
df$Var2 <- as.integer(df$Var2)
head(df)
#> Var1 Var2 rank
#> 1 A 1 4
#> 2 B 1 2
#> 3 C 1 3
#> 4 D 1 1
#> 5 A 2 3
#> 6 B 2 4
ggplot(df, aes(Var2, rank, color = Var1)) + geom_line() + geom_point()
很棒.但是,现在,我想使连接线弯曲.尽管x永远不会超过y,但geom_smooth
提供了一些可能性. loess
似乎应该起作用,因为它可以忽略除最接近点以外的点.但是,即使进行了最佳调整,我仍然可以错过很多点,并超出其他应该保持平坦的点:
Wonderful. Now, though, I want to make the connecting lines curved. Despite never having more than one y per x, geom_smooth
offers some possibilities. loess
seems like it should work, as it can ignore points except the closest. However, even with tweaking the best I can get still misses lots of points and overshoots others where it should be flat:
ggplot(df, aes(Var2, rank, color = Var1)) +
geom_smooth(method = 'loess', span = .7, se = FALSE) +
geom_point()
我尝试了许多其他样条线,例如ggalt::geom_xspline
,但是它们都仍然过冲或错过了要点:
I've tried a number of other splines, like ggalt::geom_xspline
, but they all still overshoot or miss the points:
ggplot(df, aes(Var2, rank, color = Var1)) + ggalt::geom_xspline() + geom_point()
是否有简单的方法可以弯曲这些线?我需要建立自己的S形样条吗?为了澄清,我正在寻找类似 D3.js的d3.curveMonotoneX
命中每个点,并且其局部最大值和最小值不超过y值:
Is there an easy way to curve these lines? Do I need to build my own sigmoidal spline? To clarify, I'm looking for something like D3.js's d3.curveMonotoneX
which hits every point and whose local maxima and minima do not exceed the y values:
理想情况下,每个点的斜率也可能为0,但这并不是绝对必要的.
Ideally it would probably have a slope of 0 at each point, too, but that's not absolutely necessary.
推荐答案
将signal::pchip
与X值网格配合使用是有效的,至少在您的示例中为数字轴.适当的geom_
会很好,但嘿...
Using signal::pchip
with a grid of X-values works, at least in your example with numeric axes. A proper geom_
would be nice, but hey...
library(tidyverse)
library(signal)
set.seed(47)
df <- as.data.frame(as.table(replicate(8, sample(4))), responseName = 'rank')
df$Var2 <- as.integer(df$Var2)
head(df)
#> Var1 Var2 rank
#> 1 A 1 4
#> 2 B 1 2
#> 3 C 1 3
#> 4 D 1 1
#> 5 A 2 3
#> 6 B 2 4
ggplot(df, aes(Var2, rank, color = Var1)) +
geom_line(data = df %>%
group_by(Var1) %>%
do({
tibble(Var2 = seq(min(.$Var2), max(.$Var2),length.out=100),
rank = pchip(.$Var2, .$rank, Var2))
})) +
geom_point()
结果:
这篇关于在颠簸图中使用曲线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!