问题描述
我正在尝试使用SBT运行一个Scala示例,以从MongoDB中读取数据.每当我尝试将从Mongo读取的数据访问到RDD中时,都会收到此错误.
I am trying to run a Scala example with SBT to read data from MongoDB. I am getting this error whenever I try to access the data read from Mongo into the RDD.
Exception in thread "dag-scheduler-event-loop" java.lang.NoClassDefFoundError: org/apache/spark/sql/DataFrame
at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2701)
at java.lang.Class.getDeclaredMethod(Class.java:2128)
at java.io.ObjectStreamClass.getPrivateMethod(ObjectStreamClass.java:1431)
at java.io.ObjectStreamClass.access$1700(ObjectStreamClass.java:72)
at java.io.ObjectStreamClass$2.run(ObjectStreamClass.java:494)
at java.io.ObjectStreamClass$2.run(ObjectStreamClass.java:468)
at java.security.AccessController.doPrivileged(Native Method)
at java.io.ObjectStreamClass.<init>(ObjectStreamClass.java:468)
at java.io.ObjectStreamClass.lookup(ObjectStreamClass.java:365)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1134)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1548)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1509)
即使我的代码中未使用Dataframe,我也已明确导入了Dataframe.谁能解决这个问题?
I have imported the Dataframe explicitly, even though it is not used in my code. Can anyone help with this issue?
我的代码:
package stream
import org.apache.spark._
import org.apache.spark.SparkContext._
import com.mongodb.spark._
import com.mongodb.spark.config._
import com.mongodb.spark.rdd.MongoRDD
import org.bson.Document
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.DataFrame
object SpaceWalk {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("SpaceWalk")
.setMaster("local[*]")
.set("spark.mongodb.input.uri", "mongodb://127.0.0.1/nasa.eva")
.set("spark.mongodb.output.uri", "mongodb://127.0.0.1/nasa.astronautTotals")
val sc = new SparkContext(sparkConf)
val rdd = sc.loadFromMongoDB()
def breakoutCrew ( document: Document ): List[(String,Int)] = {
println("INPUT"+document.get( "Duration").asInstanceOf[String])
var minutes = 0;
val timeString = document.get( "Duration").asInstanceOf[String]
if( timeString != null && !timeString.isEmpty ) {
val time = document.get( "Duration").asInstanceOf[String].split( ":" )
minutes = time(0).toInt * 60 + time(1).toInt
}
import scala.util.matching.Regex
val pattern = new Regex("(\\w+\\s\\w+)")
val names = pattern findAllIn document.get( "Crew" ).asInstanceOf[String]
var tuples : List[(String,Int)] = List()
for ( name <- names ) { tuples = tuples :+ (( name, minutes ) ) }
return tuples
}
val logs = rdd.flatMap( breakoutCrew ).reduceByKey( (m1: Int, m2: Int) => ( m1 + m2 ) )
//logs.foreach(println)
def mapToDocument( tuple: (String, Int ) ): Document = {
val doc = new Document();
doc.put( "name", tuple._1 )
doc.put( "minutes", tuple._2 )
return doc
}
val writeConf = WriteConfig(sc)
val writeConfig = WriteConfig(Map("collection" -> "astronautTotals", "writeConcern.w" -> "majority", "db" -> "nasa"), Some(writeConf))
logs.map( mapToDocument ).saveToMongoDB( writeConfig )
import org.apache.spark.sql.SQLContext
import com.mongodb.spark.sql._
import org.apache.spark.sql.DataFrame
// load the first dataframe "EVAs"
val sqlContext = new SQLContext(sc);
import sqlContext.implicits._
val evadf = sqlContext.read.mongo()
evadf.printSchema()
evadf.registerTempTable("evas")
// load the 2nd dataframe "astronautTotals"
val astronautDF = sqlContext.read.option("collection", "astronautTotals").mongo[astronautTotal]()
astronautDF.printSchema()
astronautDF.registerTempTable("astronautTotals")
sqlContext.sql("SELECT astronautTotals.name, astronautTotals.minutes FROM astronautTotals" ).show()
sqlContext.sql("SELECT astronautTotals.name, astronautTotals.minutes, evas.Vehicle, evas.Duration FROM " +
"astronautTotals JOIN evas ON astronautTotals.name LIKE evas.Crew" ).show()
}
}
case class astronautTotal ( name: String, minutes: Integer )
这是我的sbt文件-
name := "Project"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.0.0"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "2.0.0"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.0.0"
//libraryDependencies += "org.apache.spark" %% "spark-streaming-twitter" % "1.2.1"
libraryDependencies += "org.apache.bahir" %% "spark-streaming-twitter" % "2.0.0"
libraryDependencies += "org.mongodb.spark" %% "mongo-spark-connector" % "0.1"
addCommandAlias("c1", "run-main stream.SaveTweets")
addCommandAlias("c2", "run-main stream.SpaceWalk")
outputStrategy := Some(StdoutOutput)
//outputStrategy := Some(LoggedOutput(log: Logger))
fork in run := true
推荐答案
此错误消息是因为您使用的不兼容库仅支持Spark1.x.您应该改用mongo-spark-connector 2.0.0+.请参阅: https://docs.mongodb.com/spark-connector/v2.0/
This error message is because you are using an incompatible library that only supports Spark 1.x. You should use mongo-spark-connector 2.0.0+ instead. See: https://docs.mongodb.com/spark-connector/v2.0/
这篇关于java.lang.ClassNotFoundException:运行Scala MongoDB连接器时org.apache.spark.sql.DataFrame错误的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!