如何在火花结构化流连接中选择最新记录

如何在火花结构化流连接中选择最新记录

本文介绍了如何在火花结构化流连接中选择最新记录的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我使用的是 spark-sql 2.4.x 版本,Cassandra-3.x 版本使用的是 datastax-spark-cassandra-connector.与 kafka 一起.

我有货币样本的汇率元数据如下:

val ratesMetaDataDf = Seq((欧元"、5/10/2019"、1.130657"、美元")、(欧元"、5/9/2019"、1.13088"、美元")).toDF("base_code", "rate_date","rate_value","target_code").withColumn("rate_date", to_date($"rate_date" ,"MM/dd/yyyy").cast(DateType)).withColumn("rate_value", $"rate_value".cast(DoubleType))

我从 kafka 主题收到的销售记录是,如下(示例):

val kafkaDf = Seq((15,2016, 4, 100.5,"USD","2021-01-20","EUR",221.4)).toDF("companyId", "year","quarter","sales","code","calc_date","c_code","prev_sales")

要计算 "prev_sales" ,我需要得到它的 "c_code" 各自的 "rate_value",它最接近 "calc_date",即 rate_date"

我正在做的事情如下

val w2 = Window.orderBy(col("rate_date") desc)val rateJoinResultDf = kafkaDf.as("k").join(ratesMetaDataDf.as("e")).where( ($"k.c_code" === $"e.base_code") &&($"rate_date" < $"calc_date")).orderBy($"rate_date" desc).withColumn("row",row_number.over(w2)).where($"row" === 1).drop("row").withColumn("prev_sales", (col("prev_sales") * col("rate_value")).cast(DoubleType)).select("companyId", "year","quarter","sales","code","calc_date","prev_sales")

在上面为给定的rate_date"获取最近的记录(即5/10/2019" from ratesMetaDataDf )我正在使用 window 和 row_number 函数并按desc"对记录进行排序.

但是在 spark-sql 流中它导致了如下错误

"流数据帧/数据集不支持排序,除非它是在完整输出模式下的聚合数据帧/数据集上;;"

那么如何获取第一条记录加入上面.

解决方案

用下面的代码替换你最后的代码部分.此代码将执行 left join 并计算日期差 calc_date &rate_date.下一个 Window 函数,我们将选择最近的日期并使用您的计算方法计算 prev_sales.

请注意,我添加了一个过滤条件 filter(col("diff") >=0),它将处理 calc_date .我加了几个更多记录以更好地了解此案例.

scala>rateMetaDataDf.show+---------+----------+----------+-----------+|基本代码|rate_date|rate_value|target_code|+---------+----------+----------+-----------+|欧元|2019-05-10|1.130657|美元||欧元|2019-05-09|1.12088|美元||欧元|2019-12-20|1.1584|美元|+---------+----------+----------+-----------+标度>kafkaDf.show+---------+----+-------+-----+----+----------+-------+-----------+|companyId|年|季度|销售额|代码|calc_date|c_code|prev_sales|+---------+----+-------+-----+----+----------+-------+-----------+|15|2016|4|100.5|美元|2021-01-20|欧元|221.4||15|2016|4|100.5|美元|2019-06-20|欧元|221.4|+---------+----+-------+-----+----+----------+-------+-----------+标度>val W = Window.partitionBy("companyId","year","quarter","sales","code","calc_date","c_code","prev_sales").orderBy(col(差异"))标度>val rateJoinResultDf= kafkaDf.alias("k").join(ratesMetaDataDf.alias("r"), col("k.c_code") === col("r.base_code"), "left";).withColumn("diff",datediff(col("calc_date"), col("rate_date"))).filter(col(diff") >= 0).withColumn(关闭日期", row_number.over(W)).filter(col(closedate") === 1).drop("diff", "closedate").withColumn("prev_sales", (col("prev_sales") * col("rate_value")).cast("Decimal(14,5)")).select(companyId", year", 季度", sales", code", calc_date", prev_sales")标度>rateJoinResultDf.show+---------+----+-------+-----+----+----------+----------+|companyId|年|季度|销售额|代码|calc_date|prev_sales|+---------+----+-------+-----+----+----------+----------+|15|2016|4|100.5|美元|2021-01-20|256.46976||15|2016|4|100.5|美元|2019-06-20|250.32746|+---------+----+-------+-----+----+----------+----------+

I am using spark-sql 2.4.x version , datastax-spark-cassandra-connector for Cassandra-3.x version. Along with kafka.

val ratesMetaDataDf = Seq(
     ("EUR","5/10/2019","1.130657","USD"),
     ("EUR","5/9/2019","1.13088","USD")
     ).toDF("base_code", "rate_date","rate_value","target_code")
.withColumn("rate_date", to_date($"rate_date" ,"MM/dd/yyyy").cast(DateType))
.withColumn("rate_value", $"rate_value".cast(DoubleType))
val kafkaDf = Seq((15,2016, 4, 100.5,"USD","2021-01-20","EUR",221.4)
                                ).toDF("companyId", "year","quarter","sales","code","calc_date","c_code","prev_sales")

To calculate "prev_sales" , I need get its "c_code" 's respective "rate_value" which is nearest to the "calc_date" i.e. rate_date"

Which i am doing as following

val w2 = Window.orderBy(col("rate_date") desc)
val rateJoinResultDf = kafkaDf.as("k").join(ratesMetaDataDf.as("e"))
                                   .where( ($"k.c_code" === $"e.base_code") &&
                                           ($"rate_date" < $"calc_date")
                                         ).orderBy($"rate_date" desc)
                                  .withColumn("row",row_number.over(w2))
                                  .where($"row" === 1).drop("row")
                                  .withColumn("prev_sales", (col("prev_sales") * col("rate_value")).cast(DoubleType))
                                  .select("companyId", "year","quarter","sales","code","calc_date","prev_sales")

In the above to get nearest record (i.e. "5/10/2019" from ratesMetaDataDf ) for given "rate_date" I am using window and row_number function and sorting the records by "desc".

"
Sorting is not supported on streaming DataFrames/Datasets, unless it is on aggregated DataFrame/Dataset in Complete output mode;;"

So how to fetch first record to join in the above.

解决方案

Replace your last code part with below code. This code will do left join and calculate date difference calc_date & rate_date. Next Window function we will pick nearest date and calculate prev_sales by using same your calculation.

scala> ratesMetaDataDf.show
+---------+----------+----------+-----------+
|base_code| rate_date|rate_value|target_code|
+---------+----------+----------+-----------+
|      EUR|2019-05-10|  1.130657|        USD|
|      EUR|2019-05-09|   1.12088|        USD|
|      EUR|2019-12-20|    1.1584|        USD|
+---------+----------+----------+-----------+


scala> kafkaDf.show
+---------+----+-------+-----+----+----------+------+----------+
|companyId|year|quarter|sales|code| calc_date|c_code|prev_sales|
+---------+----+-------+-----+----+----------+------+----------+
|       15|2016|      4|100.5| USD|2021-01-20|   EUR|     221.4|
|       15|2016|      4|100.5| USD|2019-06-20|   EUR|     221.4|
+---------+----+-------+-----+----+----------+------+----------+


scala>  val W = Window.partitionBy("companyId","year","quarter","sales","code","calc_date","c_code","prev_sales").orderBy(col("diff"))

scala>   val rateJoinResultDf= kafkaDf.alias("k").join(ratesMetaDataDf.alias("r"), col("k.c_code") === col("r.base_code"), "left")
                                         .withColumn("diff",datediff(col("calc_date"), col("rate_date")))
                                         .filter(col("diff") >= 0)
                                         .withColumn("closedate", row_number.over(W))
                                         .filter(col("closedate") === 1)
                                         .drop("diff", "closedate")
                                         .withColumn("prev_sales", (col("prev_sales") * col("rate_value")).cast("Decimal(14,5)"))
                                         .select("companyId", "year","quarter","sales","code","calc_date","prev_sales")

scala> rateJoinResultDf.show
+---------+----+-------+-----+----+----------+----------+
|companyId|year|quarter|sales|code| calc_date|prev_sales|
+---------+----+-------+-----+----+----------+----------+
|       15|2016|      4|100.5| USD|2021-01-20| 256.46976|
|       15|2016|      4|100.5| USD|2019-06-20| 250.32746|
+---------+----+-------+-----+----+----------+----------+

这篇关于如何在火花结构化流连接中选择最新记录的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 13:14