问题描述
我一直在仔细研究DOT航空公司的数据,并试图创建从特定机场到所有其他站点的每家航空公司的乘客的同比变化(年同比)的堆叠条形图.
我还想按从指定机场到每个车站的总人数(market.ppd)来订购x轴(例如,此集合的始发机场是PHL,其最高目的地是MCO.下一个是Miami,LAS等)
当YOY数据仅为正数或负数时,x轴保持有序,但是一旦我尝试将两者都叠加在一起,默认情况下将恢复为字母顺序.某些站点仅经历正的同比变化或负的同比变化,而
同时具有正值和负值的图
库(ggplot2)OD <-data.frame(目的地= c('MCO','MCO','MCO','MCO','MCO','MCO','MCO','迈阿密','迈阿密','迈阿密','迈阿密','迈阿密','迈阿密','LAS','LAS','LAS','LAS','芝加哥','芝加哥','芝加哥','芝加哥','芝加哥','芝加哥','洛杉矶',洛杉矶",海湾地区",海湾地区",海湾地区",海湾地区",海湾地区","BOS","BOS","BOS","ATL","ATL","ATL","ATL","ATL","ATL","TPA","TPA","TPA","TPA","Dallas","Dallas","Dallas","DEN","DEN,DEN,PHX,PHX,PHX,PHX,PHX,CUN,CUN,RSW,RSW,RSW,SAN,"SAN","SJU",休斯顿",休斯顿","MSY","MSP","MSP","CLT","CLT","CLT","MBJ","MBJ","PUJ","PUJ","PUJ"),运营商= c('US','F9','WN','AA','FL','UA','DL','F9','US','DL','WN','UA','FL','AA','US','UA','NK','US','NK','F9','WN','UA','AA','WN','VX','US','DL','AA','VX','UA','US','B6','AA','US','WN','F9','DL','AA','FL','US','F9','WN','UA','DL','WN','US','US','WN','DL','US','WN','AA','DL','UA','US','F9','US','WN','UA','US','AA','AA','DL','WN','DL','F9','DL','F9','US','UA','AA','US','AA','F9','我们'),market.ppd = c(1242、1242、1242、1242、1242、1242、1242、1056、1056、1056、1056、1056、1056、645、645、645、641、641、641、641、641,641、526、526、498、498、498、498、498、498、492、492、492、482、482、482、482、482、482、482、478、478、478、478、478、399、399、399、333,333,333,298,298,298,298,298,243,243,232,232,232,213,213,205,198,198,173,163,163,160,160,160,152,152,147,147,147),同比= c(110,96,26,15,-39,-23,-18,52,47,11,-48,-22,-10,8,-49,-11,-6,15,10,8,8,-12,-9,9,-56,35,8,6,-32,-12,9,7,6,47,43,16,8,7,-34,44,39,8,-9、13、7,-28、21、7、6、37、7、6,-10,-7、16、9、60,-37,-6、19,-9、69,-6,-6、16,-7、20、11,-6、9,-24、8,-11,-7),label.placement = c(55,158,219,239,-20,-50,-71,26,75,105,-24,-59,-75,4,-25,-55,-63,8,20,30,38,-6,-17,4,-28,17,39,46,-16,-38,4,12,19,23,68,98,110,118,-17,22,64,87,-5,6,17,-14,10,24,31,18,40,47,-5,-14,8,20,30,-19,-40,9,-5,3,4,-3,-3,8,-4,10,26,-3,5,-12,4,-6,-15))OD $目的地<-因子(OD $目的地,OD $目的地)ggplot()+geom_bar(数据= OD [OD $ YOY> 0,],aes(x =目标,y = YOY,填充=载体),stat ='identity')+geom_text(数据= OD [OD $ YOY> 0,],aes(x =目标,y = label.placement,label =载体),大小= 2)+geom_bar(数据= OD [OD $ YOY< 0,],aes(x =目标,y = YOY,填充=载体),stat ='identity')+geom_text(数据= OD [OD $ YOY< 0,],aes(x =目标,y = label.placement,label =载体),size = 2)+主题(axis.text.x = element_text(大小= 10,垂直= 0.5,角度= 90),图例.位置='none')
您可以定义顺序,然后告诉ggplot相应地显示数据:
库(ggplot2)OD <-data.frame(目的地= c('MCO','MCO','MCO','MCO','MCO','MCO','MCO','迈阿密','迈阿密','迈阿密','迈阿密','迈阿密','迈阿密','LAS','LAS','LAS','LAS','芝加哥','芝加哥','芝加哥','芝加哥','芝加哥','芝加哥','洛杉矶',洛杉矶",海湾地区",海湾地区",海湾地区",海湾地区",海湾地区","BOS","BOS","BOS","ATL","ATL","ATL","ATL","ATL","ATL","TPA","TPA","TPA","TPA","Dallas","Dallas","Dallas","DEN","DEN,DEN,PHX,PHX,PHX,PHX,PHX,CUN,CUN,RSW,RSW,RSW,SAN,"SAN","SJU",休斯顿",休斯顿","MSY","MSP","MSP","CLT","CLT","CLT","MBJ","MBJ","PUJ","PUJ","PUJ"),运营商= c('US','F9','WN','AA','FL','UA','DL','F9','US','DL','WN','UA','FL','AA','US','UA','NK','US','NK','F9','WN','UA','AA','WN','VX','US','DL','AA','VX','UA','US','B6','AA','US','WN','F9','DL','AA','FL','US','F9','WN','UA','DL','WN','US','US','WN','DL','US','WN','AA','DL','UA','US','F9','US','WN','UA','US','AA','AA','DL','WN','DL','F9','DL','F9','US','UA','AA','US','AA','F9','我们'),market.ppd = c(1242、1242、1242、1242、1242、1242、1242、1056、1056、1056、1056、1056、1056、645、645、645、641、641、641、641、641,641、526、526、498、498、498、498、498、498、492、492、492、482、482、482、482、482、482、482、478、478、478、478、478、399、399、399、333,333,333,298,298,298,298,298,243,243,232,232,232,213,213,205,198,198,173,163,163,160,160,160,152,152,147,147,147),同比= c(110,96,26,15,-39,-23,-18,52,47,11,-48,-22,-10,8,-49,-11,-6,15,10,8,8,-12,-9,9,-56,35,8,6,-32,-12,9,7,6,47,43,16,8,7,-34,44,39,8,-9、13、7,-28、21、7、6、37、7、6,-10,-7、16、9、60,-37,-6、19,-9、69,-6,-6、16,-7、20、11,-6、9,-24、8,-11,-7),label.placement = c(55,158,219,239,-20,-50,-71,26,75,105,-24,-59,-75,4,-25,-55,-63,8,20,30,38,-6,-17,4,-28,17,39,46,-16,-38,4,12,19,23,68,98,110,118,-17,22,64,87,-5,6,17,-14,10,24,31,18,40,47,-5,-14,8,20,30,-19,-40,9,-5,3,4,-3,-3,8,-4,10,26,-3,5,-12,4,-6,-15))OD $目的地<-因子(OD $目的地,OD $目的地)新订单<-唯一(级别(OD $目的地))ggplot()+geom_bar(数据= OD [OD $ YOY> 0,],aes(x =目标,y = YOY,填充=载体),stat ='identity')+geom_text(数据= OD [OD $ YOY> 0,],aes(x =目标,y = label.placement,label =载体),大小= 2)+geom_bar(数据= OD [OD $ YOY< 0,],aes(x =目标,y = YOY,填充=载体),stat ='identity')+geom_text(数据= OD [OD $ YOY< 0,],aes(x =目标,y = label.placement,label =载体),size = 2)+主题(axis.text.x = element_text(大小= 10,垂直= 0.5,角度= 90),图例.位置='none')+scale_x_discrete(limits = c(neworder))
I've been perusing DOT airline data and am trying to create a stacked bar graph of the year over year (YOY) change in each airline's passengers from a specific airport to all other stations.
I also want to order the x-axis by the total number of people (market.ppd) traveling from the specified airport to each station (e.g. This set's origin airport is PHL, and its top destination is MCO. Next is Miami, LAS, etc.)
The x-axis stays ordered when the YOY data is solely positive or negative but defaults back to alphabetical order once I try to stack the bar with both. Some stations only experience a positive YOY change or a negative YOY change, whereas the example in this post has positive and negative values for each category.
My hunch is ggplot reverts the levels to alphabetical order once it finds that some of the stations don't have corresponding positive/negative values. Is there any way to retain the ordered levels once I append the negative values to the positive for each station?
Plot with only positive values
Plot with both positive and negative values
library(ggplot2)
OD <- data.frame(
destination = c('MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'Miami', 'Miami', 'Miami', 'Miami', 'Miami', 'Miami', 'LAS', 'LAS', 'LAS', 'LAS', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Los Angeles', 'Los Angeles', 'Bay Area', 'Bay Area', 'Bay Area', 'Bay Area', 'Bay Area', 'BOS', 'BOS', 'BOS', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'TPA', 'TPA', 'TPA', 'TPA', 'Dallas', 'Dallas', 'Dallas', 'DEN', 'DEN', 'DEN', 'PHX', 'PHX', 'PHX', 'PHX', 'PHX', 'CUN', 'CUN', 'RSW', 'RSW', 'RSW', 'SAN', 'SAN', 'SJU', 'Houston', 'Houston', 'MSY', 'MSP', 'MSP', 'CLT', 'CLT', 'CLT', 'MBJ', 'MBJ', 'PUJ', 'PUJ', 'PUJ'),
carrier = c('US', 'F9', 'WN', 'AA', 'FL', 'UA', 'DL', 'F9', 'US', 'DL', 'WN', 'UA', 'FL', 'AA', 'US', 'UA', 'NK', 'US', 'NK', 'F9', 'WN', 'UA', 'AA', 'WN', 'VX', 'US', 'DL', 'AA', 'VX', 'UA', 'US', 'B6', 'AA', 'US', 'WN', 'F9', 'DL', 'AA', 'FL', 'US', 'F9', 'WN', 'UA', 'DL', 'WN', 'US', 'US', 'WN', 'DL', 'US', 'WN', 'AA', 'DL', 'UA', 'US', 'F9', 'US', 'WN', 'UA', 'US', 'AA', 'AA', 'DL', 'WN', 'DL', 'F9', 'DL', 'F9', 'US', 'UA', 'AA', 'US', 'AA', 'F9', 'US'),
market.ppd = c(1242, 1242, 1242, 1242, 1242, 1242, 1242, 1056, 1056, 1056, 1056, 1056, 1056, 645, 645, 645, 645, 641, 641, 641, 641, 641, 641, 526, 526, 498, 498, 498, 498, 498, 492, 492, 492, 482, 482, 482, 482, 482, 482, 478, 478, 478, 478, 399, 399, 399, 333, 333, 333, 298, 298, 298, 298, 298, 243, 243, 232, 232, 232, 213, 213, 205, 198, 198, 173, 163, 163, 160, 160, 160, 152, 152, 147, 147, 147),
YOY = c(110, 96, 26, 15, -39, -23, -18, 52, 47, 11, -48, -22, -10, 8, -49, -11, -6, 15, 10, 8, 8, -12, -9, 9, -56, 35, 8, 6, -32, -12, 9, 7, 6, 47, 43, 16, 8, 7, -34, 44, 39, 8, -9, 13, 7, -28, 21, 7, 6, 37, 7, 6, -10, -7, 16, 9, 60, -37, -6, 19, -9, 6, 9, -6, -6, 16, -7, 20, 11, -6, 9, -24, 8, -11, -7),
label.placement = c(55, 158, 219, 239, -20, -50, -71, 26, 75, 105, -24, -59, -75, 4, -25, -55, -63, 8, 20, 30, 38, -6, -17, 4, -28, 17, 39, 46, -16, -38, 4, 12, 19, 23, 68, 98, 110, 118, -17, 22, 64, 87, -5, 6, 17, -14, 10, 24, 31, 18, 40, 47, -5, -14, 8, 20, 30, -19, -40, 9, -5, 3, 4, -3, -3, 8, -4, 10, 26, -3, 5, -12, 4, -6, -15))
OD$destination <- factor(OD$destination, OD$destination)
ggplot() +
geom_bar(data = OD[OD$YOY > 0, ], aes(x = destination, y = YOY, fill = carrier), stat = 'identity') +
geom_text(data = OD[OD$YOY > 0, ], aes(x = destination, y = label.placement, label = carrier), size = 2) +
geom_bar(data = OD[OD$YOY < 0, ], aes(x = destination, y = YOY, fill = carrier), stat = 'identity') +
geom_text(data = OD[OD$YOY < 0, ], aes(x = destination, y = label.placement, label = carrier), size = 2) +
theme(axis.text.x = element_text(size = 10, vjust = .5, angle = 90), legend.position = 'none')
You can define an order and then tell ggplot to display the data accordingly:
library(ggplot2)
OD <- data.frame(
destination = c('MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'MCO', 'Miami', 'Miami', 'Miami', 'Miami', 'Miami', 'Miami', 'LAS', 'LAS', 'LAS', 'LAS', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Chicago', 'Los Angeles', 'Los Angeles', 'Bay Area', 'Bay Area', 'Bay Area', 'Bay Area', 'Bay Area', 'BOS', 'BOS', 'BOS', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'ATL', 'TPA', 'TPA', 'TPA', 'TPA', 'Dallas', 'Dallas', 'Dallas', 'DEN', 'DEN', 'DEN', 'PHX', 'PHX', 'PHX', 'PHX', 'PHX', 'CUN', 'CUN', 'RSW', 'RSW', 'RSW', 'SAN', 'SAN', 'SJU', 'Houston', 'Houston', 'MSY', 'MSP', 'MSP', 'CLT', 'CLT', 'CLT', 'MBJ', 'MBJ', 'PUJ', 'PUJ', 'PUJ'),
carrier = c('US', 'F9', 'WN', 'AA', 'FL', 'UA', 'DL', 'F9', 'US', 'DL', 'WN', 'UA', 'FL', 'AA', 'US', 'UA', 'NK', 'US', 'NK', 'F9', 'WN', 'UA', 'AA', 'WN', 'VX', 'US', 'DL', 'AA', 'VX', 'UA', 'US', 'B6', 'AA', 'US', 'WN', 'F9', 'DL', 'AA', 'FL', 'US', 'F9', 'WN', 'UA', 'DL', 'WN', 'US', 'US', 'WN', 'DL', 'US', 'WN', 'AA', 'DL', 'UA', 'US', 'F9', 'US', 'WN', 'UA', 'US', 'AA', 'AA', 'DL', 'WN', 'DL', 'F9', 'DL', 'F9', 'US', 'UA', 'AA', 'US', 'AA', 'F9', 'US'),
market.ppd = c(1242, 1242, 1242, 1242, 1242, 1242, 1242, 1056, 1056, 1056, 1056, 1056, 1056, 645, 645, 645, 645, 641, 641, 641, 641, 641, 641, 526, 526, 498, 498, 498, 498, 498, 492, 492, 492, 482, 482, 482, 482, 482, 482, 478, 478, 478, 478, 399, 399, 399, 333, 333, 333, 298, 298, 298, 298, 298, 243, 243, 232, 232, 232, 213, 213, 205, 198, 198, 173, 163, 163, 160, 160, 160, 152, 152, 147, 147, 147),
YOY = c(110, 96, 26, 15, -39, -23, -18, 52, 47, 11, -48, -22, -10, 8, -49, -11, -6, 15, 10, 8, 8, -12, -9, 9, -56, 35, 8, 6, -32, -12, 9, 7, 6, 47, 43, 16, 8, 7, -34, 44, 39, 8, -9, 13, 7, -28, 21, 7, 6, 37, 7, 6, -10, -7, 16, 9, 60, -37, -6, 19, -9, 6, 9, -6, -6, 16, -7, 20, 11, -6, 9, -24, 8, -11, -7),
label.placement = c(55, 158, 219, 239, -20, -50, -71, 26, 75, 105, -24, -59, -75, 4, -25, -55, -63, 8, 20, 30, 38, -6, -17, 4, -28, 17, 39, 46, -16, -38, 4, 12, 19, 23, 68, 98, 110, 118, -17, 22, 64, 87, -5, 6, 17, -14, 10, 24, 31, 18, 40, 47, -5, -14, 8, 20, 30, -19, -40, 9, -5, 3, 4, -3, -3, 8, -4, 10, 26, -3, 5, -12, 4, -6, -15))
OD$destination <- factor(OD$destination, OD$destination)
neworder <- unique(levels(OD$destination))
ggplot() +
geom_bar(data = OD[OD$YOY > 0, ], aes(x = destination, y = YOY, fill = carrier), stat = 'identity') +
geom_text(data = OD[OD$YOY > 0, ], aes(x = destination, y = label.placement, label = carrier), size = 2) +
geom_bar(data = OD[OD$YOY < 0, ], aes(x = destination, y = YOY, fill = carrier), stat = 'identity') +
geom_text(data = OD[OD$YOY < 0, ], aes(x = destination, y = label.placement, label = carrier), size = 2) +
theme(axis.text.x = element_text(size = 10, vjust = .5, angle = 90), legend.position = 'none')+
scale_x_discrete(limits=c(neworder))
这篇关于ggplot具有负值的堆叠Barplot的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!