本文介绍了ggplot2作为线条绘制表格的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我想绘制下列数据集: pre $ structure(list(X = structure(c(3L,12L,11L) ,7L,13L,2L,1L, 10L,5L,4L,8L,14L,9L,6L)。标签= c(BUM,DDR,ETB, EXP,HED,HEDOS,KON,LEIT,MAIN,MAT,PER,PMA,,TRA,TRADITION) 因子),Geschaeft = C(0.0468431771894094, 0.0916666666666667,0.0654761904761905,0.0905432595573441,0.0761904761904762, 0.0672097759674134,0.0869565217391304,0.0650887573964497,0.0762250453720508, 0.0518234165067179,0.0561330561330561,0.060077519379845,0.0865384615384615, 0.0628683693516699),Gaststaette = C(0.0855397148676171,0.0604166666666667, 0.0555555555555556,0.0764587525150905,0.0895238095238095,0.0712830957230143, 0.075098814229249,0.0631163708086785,0.0780399274047187,0.0383877159309021, 0.0561330561330561,0.0581395348837209,0.0596153846153846,0.0648330058939096 ),Bank = c(0.065173116089613,0.085416666 6666667,0.0972222222222222, 0.0824949698189135,0.060952380952381,0.0529531568228106,0.0731225296442688, 0.0828402366863905,0.0725952813067151,0.0806142034548944,0.0686070686070686, 0.0503875968992248,0.0807692307692308,0.0550098231827112) Hausarzt = C(0.0712830957230143,0.0833333333333333 ,0.0912698412698413, 0.0704225352112676,0.0628571428571429,0.0672097759674134, 0.106719367588933,0.0710059171597633,0.108892921960073, 0.0940499040307102,0.0852390852390852,0.0794573643410853, 0.0826923076923077,0.110019646365422),Einr..F..Aeltere = C(0.10183299389002, 0.104166666666667,0.107142857142857,0.100603621730382, 0.12,0.116089613034623,0.112648221343874,0.112426035502959, 0.121597096188748,0.0998080614203455,0.118503118503119, 0.131782945736434,0.121153846153846,0.104125736738703) Park = c(0.0855397148676171,0.0666666666666667,0.0912698412698413 , 0.0804828973843058,0.0704761904761905,0.0672097759674134, 0.0731225296442688,0.0670611439842209,0.0834845735027223, 0.0806142034548944,0.0686070686070686,0.0658914728682171, 0.0884615384615385,0.0609037328094303),Sportstaette = C(0.0855397148676171, 0.0791666666666667,0.0952380952380952,0.0824949698189135, 0.0933333333333333,0.114052953156823,0.0810276679841897, 0.0788954635108481,0.0780399274047187,0.0825335892514395, 0.0831600831600832,0.0852713178294574,0.0884615384615385, 0.1237721021611),OEPNV = C(0.0529531568228106,0.05625 , 0.0456349206349206,0.0583501006036217,0.0666666666666667, 0.0366598778004073,0.0434782608695652,0.0571992110453649, 0.0344827586206897,0.0633397312859885,0.0478170478170478, 0.062015503875969,0.0519230769230769,0.0235756385068762 ),Mangel.an。 Gruenflaechen = c(0.0692464358452139,0.06458333333333 33, 0.0694444444444444,0.0422535211267606,0.0666666666666667, 0.0692464358452139,0.0711462450592885,0.0749506903353057, 0.0598911070780399,0.0959692898272553,0.0623700623700624, 0.0717054263565891,0.0653846153846154,0.0746561886051081 )中,Kriminalitaet = C (0.0672097759674134,0.0541666666666667, 0.0476190476190476,0.0422535211267606,0.0628571428571429, 0.0509164969450102,0.0454545454545455,0.0532544378698225, 0.058076225045372,0.072936660268714,0.0602910602910603, 0.063953488372093,0.0461538461538462,0.0648330058939096 )中, Auslaender = C(0.0244399185336049,0.04375,0.0416666666666667, 0.0663983903420523,0.0228571428571429,0.0509164969450102, 0.0237154150197628,0.0236686390532544,0.0217785843920145, 0.0441458733205374,0.024948024948025,0.0232558139534884, 0.0230769230769231,0.0451866404715128),Umweltbelastung = c(0.0468431771894 094, 0.0479166666666667,0.0476190476190476,0.0402414486921529, 0.0438095238095238,0.0468431771894094,0.0454545454545455, 0.0512820512820513,0.0417422867513612,0.0518234165067179, 0.0478170478170478,0.0445736434108527,0.0442307692307692, 0.0451866404715128),EINR ..f..Kinder = C(0.0753564154786151, 0.075,0.0555555555555556,0.0724346076458753,0.0533333333333333, 0.0794297352342159,0.075098814229249,0.0788954635108481, 0.0598911070780399,0.0460652591170825,0.0977130977130977, 0.0930232558139535,0.0634615384615385 ,0.0451866404715128 ),Einr..f..Jugendliche = c(0.122199592668024,0.0875,0.0892857142857143, 0.0945674044265594,0.11047619047619,0.109979633401222, 0.0869565217391304,0.120315581854043,0.105263157894737, 0.0978886756238004, 0.122661122661123,0.11046511627907, 0.0980769230769231,0.119842829076621)),.Names = c(X, Geschaeft,Gaststaette,Bank,Hausarzt,Einr..F..Aeltere,Park,Sportstaette,OEPNV,Mangel.an.Gruenflaechen, Kriminalitaet,Auslaender,Umweltbelastung,Einr..f..Kinder,Einr..f..Jugendliche),row.names = c(NA, - 14L),class =data.frame) 让它看起来像这张照片(或更好每行都在一个单独的图中),我用Excel创建。 但是我无法弄清楚如何...... 非常感谢你的帮助。 Dominik 更新:这里仅仅是组(BUM,DDR,ETB等)的意思。 解决方案这是@ Andrie解决方案的扩展。它结合了重叠绘图的面貌(偷偷地从学习者博客,我发现它有一个很酷的可视化效果。下面是代码和结果输出。欢迎评论 mdf mdf = transform(mdf,variable = reorder(variable,value,mean),Y = X) ggplot(mdf,aes(x = variable,y = value))+ geom_line(data = transform(mdf,X = NULL),aes(group = Y),color =grey80 )+ geom_line(aes(group = X))+ facet_wrap(〜X)+ opts(axis.text.x = theme_text(angle = 90,hjust = 1)) 编辑:如果你有分组的milieus,那么更好的呈现方式可能如下: mycols = c(brewer.pal(4,' brewer.pal(4,'Greens'), brewer.pal(3,'Blues'),brewer.pal(3,'PuRd')) mdf2 = read.table (textConnection( V1,V2 ETB,LEIT PMA,LEIT PER,LEIT $ b $ LEIT,LEIT KON,TRADITION TRA,TRADITION DDR,TRADITION TRADITION,TRADITION BUM,MAIN $ b $ MAT MAT,MAIN MAIN,MAIN EXP,HEDOS HED ,HEDOS HEDOS,HEDOS),sep =,,header = T,stringsAsFactors = F) mdf2 = data.frame(mdf2,mycols = mycols) mdf3 = merge(mdf,mdf2,by.x ='X',by.y =V1) p1 = ggplot(mdf3,aes(x = variable,y = value,group = X,color = mycols))+ geom_line(subset =。(nchar(as.character(X))== 3))+ geom_line(subset =。(nchar(as.character ))!= 3),size = 1.5)+ facet_wrap(〜V2)+ scale_color_identity(name ='Milieus',breaks = mdf2 $ mycols,labels = mdf2 $ V1)+ theme_bw()+ opts(axis.text.x = theme_text(angl e = 90,hjust = 1)) I would like to plot the following datasetstructure(list(X = structure(c(3L, 12L, 11L, 7L, 13L, 2L, 1L,10L, 5L, 4L, 8L, 14L, 9L, 6L), .Label = c("BUM", "DDR", "ETB","EXP", "HED", "HEDOS", "KON", "LEIT", "MAIN", "MAT", "PER", "PMA","TRA", "TRADITION"), class = "factor"), Geschaeft = c(0.0468431771894094,0.0916666666666667, 0.0654761904761905, 0.0905432595573441, 0.0761904761904762,0.0672097759674134, 0.0869565217391304, 0.0650887573964497, 0.0762250453720508,0.0518234165067179, 0.0561330561330561, 0.060077519379845, 0.0865384615384615,0.0628683693516699), Gaststaette = c(0.0855397148676171, 0.0604166666666667,0.0555555555555556, 0.0764587525150905, 0.0895238095238095, 0.0712830957230143,0.075098814229249, 0.0631163708086785, 0.0780399274047187, 0.0383877159309021,0.0561330561330561, 0.0581395348837209, 0.0596153846153846, 0.0648330058939096), Bank = c(0.065173116089613, 0.0854166666666667, 0.0972222222222222,0.0824949698189135, 0.060952380952381, 0.0529531568228106, 0.0731225296442688,0.0828402366863905, 0.0725952813067151, 0.0806142034548944, 0.0686070686070686,0.0503875968992248, 0.0807692307692308, 0.0550098231827112), Hausarzt = c(0.0712830957230143, 0.0833333333333333, 0.0912698412698413, 0.0704225352112676, 0.0628571428571429, 0.0672097759674134, 0.106719367588933, 0.0710059171597633, 0.108892921960073, 0.0940499040307102, 0.0852390852390852, 0.0794573643410853, 0.0826923076923077, 0.110019646365422), Einr..F..Aeltere = c(0.10183299389002, 0.104166666666667, 0.107142857142857, 0.100603621730382, 0.12, 0.116089613034623, 0.112648221343874, 0.112426035502959, 0.121597096188748, 0.0998080614203455, 0.118503118503119, 0.131782945736434, 0.121153846153846, 0.104125736738703), Park = c(0.0855397148676171, 0.0666666666666667, 0.0912698412698413, 0.0804828973843058, 0.0704761904761905, 0.0672097759674134, 0.0731225296442688, 0.0670611439842209, 0.0834845735027223, 0.0806142034548944, 0.0686070686070686, 0.0658914728682171, 0.0884615384615385, 0.0609037328094303), Sportstaette = c(0.0855397148676171, 0.0791666666666667, 0.0952380952380952, 0.0824949698189135, 0.0933333333333333, 0.114052953156823, 0.0810276679841897, 0.0788954635108481, 0.0780399274047187, 0.0825335892514395, 0.0831600831600832, 0.0852713178294574, 0.0884615384615385, 0.1237721021611), OEPNV = c(0.0529531568228106, 0.05625, 0.0456349206349206, 0.0583501006036217, 0.0666666666666667, 0.0366598778004073, 0.0434782608695652, 0.0571992110453649, 0.0344827586206897, 0.0633397312859885, 0.0478170478170478, 0.062015503875969, 0.0519230769230769, 0.0235756385068762 ), Mangel.an.Gruenflaechen = c(0.0692464358452139, 0.0645833333333333, 0.0694444444444444, 0.0422535211267606, 0.0666666666666667, 0.0692464358452139, 0.0711462450592885, 0.0749506903353057, 0.0598911070780399, 0.0959692898272553, 0.0623700623700624, 0.0717054263565891, 0.0653846153846154, 0.0746561886051081 ), Kriminalitaet = c(0.0672097759674134, 0.0541666666666667, 0.0476190476190476, 0.0422535211267606, 0.0628571428571429, 0.0509164969450102, 0.0454545454545455, 0.0532544378698225, 0.058076225045372, 0.072936660268714, 0.0602910602910603, 0.063953488372093, 0.0461538461538462, 0.0648330058939096 ), Auslaender = c(0.0244399185336049, 0.04375, 0.0416666666666667, 0.0663983903420523, 0.0228571428571429, 0.0509164969450102, 0.0237154150197628, 0.0236686390532544, 0.0217785843920145, 0.0441458733205374, 0.024948024948025, 0.0232558139534884, 0.0230769230769231, 0.0451866404715128), Umweltbelastung = c(0.0468431771894094, 0.0479166666666667, 0.0476190476190476, 0.0402414486921529, 0.0438095238095238, 0.0468431771894094, 0.0454545454545455, 0.0512820512820513, 0.0417422867513612, 0.0518234165067179, 0.0478170478170478, 0.0445736434108527, 0.0442307692307692, 0.0451866404715128), Einr..f..Kinder = c(0.0753564154786151, 0.075, 0.0555555555555556, 0.0724346076458753, 0.0533333333333333, 0.0794297352342159, 0.075098814229249, 0.0788954635108481, 0.0598911070780399, 0.0460652591170825, 0.0977130977130977, 0.0930232558139535, 0.0634615384615385, 0.0451866404715128 ), Einr..f..Jugendliche = c(0.122199592668024, 0.0875, 0.0892857142857143, 0.0945674044265594, 0.11047619047619, 0.109979633401222, 0.0869565217391304, 0.120315581854043, 0.105263157894737, 0.0978886756238004, 0.122661122661123, 0.11046511627907, 0.0980769230769231, 0.119842829076621)), .Names = c("X","Geschaeft", "Gaststaette", "Bank", "Hausarzt", "Einr..F..Aeltere","Park", "Sportstaette", "OEPNV", "Mangel.an.Gruenflaechen", "Kriminalitaet","Auslaender", "Umweltbelastung", "Einr..f..Kinder", "Einr..f..Jugendliche"), row.names = c(NA, -14L), class = "data.frame")So that it look like this picture (or better with each line in a seperate plot) that I created with Excel.But I can't figure out how...Thanks a lot for your help.DominikUPDATE: Here is just a map of what the groups (BUM,DDR,ETB etc.) mean. 解决方案 This is an extension to @Andrie's solution. It combines the faceting idea with that of overplotting (stolen liberally from the learnr blog, which I find results in a cool visualization. Here is the code and the resulting output. Comments are welcome mdf <- melt(df, id.vars="X")mdf = transform(mdf, variable = reorder(variable, value, mean), Y = X)ggplot(mdf, aes(x = variable, y = value)) + geom_line(data = transform(mdf, X = NULL), aes(group = Y), colour = "grey80") + geom_line(aes(group = X)) + facet_wrap(~X) + opts(axis.text.x = theme_text(angle=90, hjust=1))EDIT: If you have groupings of milieus, then a better way to present might be the followingmycols = c(brewer.pal(4, 'Oranges'), brewer.pal(4, 'Greens'), brewer.pal(3, 'Blues'), brewer.pal(3, 'PuRd'))mdf2 = read.table(textConnection(" V1, V2 ETB, LEIT PMA, LEIT PER, LEIT LEIT, LEIT KON, TRADITION TRA, TRADITION DDR, TRADITION TRADITION, TRADITION BUM, MAIN MAT, MAIN MAIN, MAIN EXP, HEDOS HED, HEDOS HEDOS, HEDOS"), sep = ",", header = T, stringsAsFactors = F)mdf2 = data.frame(mdf2, mycols = mycols)mdf3 = merge(mdf, mdf2, by.x = 'X', by.y = "V1")p1 = ggplot(mdf3, aes(x = variable, y = value, group = X, colour = mycols)) + geom_line(subset = .(nchar(as.character(X)) == 3)) + geom_line(subset = .(nchar(as.character(X)) != 3), size = 1.5) + facet_wrap(~ V2) + scale_color_identity(name = 'Milieus', breaks = mdf2$mycols, labels = mdf2$V1) + theme_bw() + opts(axis.text.x = theme_text(angle=90, hjust=1)) 这篇关于ggplot2作为线条绘制表格的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-20 12:16