本文介绍了将Matlab eig(A,B)(广义特征值/特征向量)重写为C/C ++的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

有人知道如何从用于计算广义特征向量/特征值的Matlab重写eig(A,B)吗?我最近一直在努力解决这个问题.到目前为止:

我需要的eig函数的Matlab定义:

[V,D] = eig(A,B) produces a diagonal matrix D of generalized
eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors so that A*V = B*V*D.
  1. 到目前为止,我尝试了Eigen库( http://eigen.tuxfamily.org/dox/classEigen_1_1GeneralizedSelfAdjointEigenSolver.html )

我的实现如下:

std::pair<Matrix4cd, Vector4d> eig(const Matrix4cd& A, const Matrix4cd& B)
{
    Eigen::GeneralizedSelfAdjointEigenSolver<Matrix4cd> solver(A, B);

    Matrix4cd V = solver.eigenvectors();
    Vector4d D = solver.eigenvalues();

    return std::make_pair(V, D);
}

但是我想到的第一件事是,我不能使用Vector4cd,因为.eigenvalues()不会像Matlab那样返回复杂的值.此外,相同矩阵的.eigenvectors().eigenvalues()的结果根本不相同:

C ++:

Matrix4cd x;
Matrix4cd y;
pair<Matrix4cd, Vector4d> result;

for (int i = 0; i < 4; i++)
{
    for (int j = 0; j < 4; j++)
    {
        x.real()(i,j) = (double)(i+j+1+i*3);
        y.real()(i,j) = (double)(17 - (i+j+1+i*3));

        x.imag()(i,j) = (double)(i+j+1+i*3);
        y.imag()(i,j) = (double)(17 - (i+j+1+i*3));
    }
}
result = eig(x,y);
cout << result.first << endl << endl;
cout << result.second << endl << endl;

Matlab:

for i=1:1:4
    for j=1:1:4
        x(i,j) = complex((i-1)+(j-1)+1+((i-1)*3), (i-1)+(j-1)+1+((i-1)*3));
        y(i,j) = complex(17 - ((i-1)+(j-1)+1+((i-1)*3)), 17 - ((i-1)+(j-1)+1+((i-1)*3)));
    end
end

[A,B] = eig(x,y)

因此,我给eig相同的4x4矩阵,它们具有值1-16递增(x)和递减(y).但是我收到了不同的结果,而且Eigen方法从特征值返回了两倍,而Matlab返回了复杂的dobule.我还发现还有其他名为GeneralizedEigenSolverEigen求解器.文档( http://eigen.tuxfamily.org/dox/classEigen_1_1GeneralizedEigenSolver.html)已写出它可以解决A*V = B*V*D的问题,但老实说,我尝试过,结果(矩阵大小)与Matlab的大小不同,因此我完全迷失了它的工作原理(示例性结果在我链接的网站上).它也只有.eigenvector方法.

C ++结果:

(-0.222268,-0.0108754) (0.0803437,-0.0254809) (0.0383264,-0.0233819) (0.0995482,0.00682079)
(-0.009275,-0.0182668) (-0.0395551,-0.0582127) (0.0550395,0.03434) (-0.034419,-0.0287563)
(-0.112716,-0.0621061) (-0.010788,0.10297) (-0.0820552,0.0294896) (-0.114596,-0.146384)
(0.28873,0.257988) (0.0166259,-0.0529934) (0.0351645,-0.0322988) (0.405394,0.424698)

-1.66983
-0.0733194
0.0386832
3.97933

Matlab结果:

[A,B] = eig(x,y)


A =

  Columns 1 through 3

  -0.9100 + 0.0900i  -0.5506 + 0.4494i   0.3614 + 0.3531i
   0.7123 + 0.0734i   0.4928 - 0.2586i  -0.5663 - 0.4337i
   0.0899 - 0.4170i  -0.1210 - 0.3087i   0.0484 - 0.1918i
   0.1077 + 0.2535i   0.1787 + 0.1179i   0.1565 + 0.2724i

  Column 4

  -0.3237 - 0.3868i
   0.2338 + 0.7662i
   0.5036 - 0.3720i
  -0.4136 - 0.0074i


B =

  Columns 1 through 3

  -1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -1.0000 - 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -4.5745 - 1.8929i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

  Column 4

   0.0000 + 0.0000i
   0.0000 + 0.0000i
   0.0000 + 0.0000i
  -0.3317 + 1.1948i
  1. 第二次尝试使用Intel IPP,但似乎只能解决A*V = V*D,并且支持告诉我它不再受支持.

https://software.intel.com/en-us/node/505270 (英特尔IPP的构造函数列表)

  1. 我得到了从英特尔IPP迁移到MKL的建议.我做到了,又撞到了墙.我尝试检查Eigen的所有算法,但似乎只有A*V = V*D问题已解决.我正在检查lapack95.lib.该库使用的算法列表可在以下位置找到: https://software.intel .com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/index.htm#dsyev.htm

当有人说通过使用MKL可以部分解决我的问题时,在网上的某个地方我可以在Mathworks上找到主题:

http://jp.mathworks.com/matlabcentral/answers/40050-generalized-eigenvalue-and-eigenvectors-differences-between-matlab-eig-ab-and-mkl-lapack-dsygv

Person说他/她使用了dsygv算法,但是我在网络上找不到类似的内容.也许是错字.

任何人都有其他主张/想法如何实现?或指出我的错误.我会很感激的.


在评论中,我收到了暗示,提示我我使用的Eigen求解器错误.我的A矩阵不是自伴的,我的B矩阵也不是正定的.我从要重写为C ++的程序中提取了矩阵(通过随机迭代),并检查它们是否满足要求.他们做到了:

Rj =

  1.0e+02 *

 Columns 1 through 3

   0.1302 + 0.0000i  -0.0153 + 0.0724i   0.0011 - 0.0042i
  -0.0153 - 0.0724i   1.2041 + 0.0000i  -0.0524 + 0.0377i
   0.0011 + 0.0042i  -0.0524 - 0.0377i   0.0477 + 0.0000i
  -0.0080 - 0.0108i   0.0929 - 0.0115i  -0.0055 + 0.0021i

  Column 4

  -0.0080 + 0.0108i
   0.0929 + 0.0115i
  -0.0055 - 0.0021i
   0.0317 + 0.0000i

Rt =

  Columns 1 through 3

   4.8156 + 0.0000i  -0.3397 + 1.3502i  -0.2143 - 0.3593i
  -0.3397 - 1.3502i   7.3635 + 0.0000i  -0.5539 - 0.5176i
  -0.2143 + 0.3593i  -0.5539 + 0.5176i   1.7801 + 0.0000i
   0.5241 + 0.9105i   0.9514 + 0.6572i  -0.7302 + 0.3161i

  Column 4

   0.5241 - 0.9105i
   0.9514 - 0.6572i
  -0.7302 - 0.3161i
   9.6022 + 0.0000i

至于Rj,现在是我的A-它是自伴的,因为Rj = Rj'Rj = ctranspose(Rj). ( http://mathworld.wolfram.com/Self-AdjointMatrix.html ) >

至于Rt,现在是我的B-使用与我链接的方法进行检查是肯定的. ( http://www.mathworks.com/matlabcentral/answers/101132-how-do-i-determine-if-a-matrix-is-positive-definite-using-matlab ).所以

>> [~,p] = chol(Rt)

p =

     0

我已将矩阵手动重写为C ++,并再次使用满足要求的矩阵执行了eig(A,B):

Matrix4cd x;
Matrix4cd y;
pair<Matrix4cd, Vector4d> result;

x.real()(0,0) = 13.0163601949795;
x.real()(0,1) = -1.53172561296005;
x.real()(0,2) = 0.109594869350436;
x.real()(0,3) = -0.804231869422614;

x.real()(1,0) = -1.53172561296005;
x.real()(1,1) = 120.406645675346;
x.real()(1,2) = -5.23758765476463;
x.real()(1,3) = 9.28686785230169;

x.real()(2,0) = 0.109594869350436;
x.real()(2,1) = -5.23758765476463;
x.real()(2,2) = 4.76648319080400;
x.real()(2,3) = -0.552823839520508;

x.real()(3,0) = -0.804231869422614;
x.real()(3,1) = 9.28686785230169;
x.real()(3,2) = -0.552823839520508;
x.real()(3,3) = 3.16510496622613;

x.imag()(0,0) = -0.00000000000000;
x.imag()(0,1) = 7.23946944213164;
x.imag()(0,2) = 0.419181335323979;
x.imag()(0,3) = 1.08441894337449;

x.imag()(1,0) = -7.23946944213164;
x.imag()(1,1) = -0.00000000000000;
x.imag()(1,2) = 3.76849276970080;
x.imag()(1,3) = 1.14635625342266;

x.imag()(2,0) = 0.419181335323979;
x.imag()(2,1) = -3.76849276970080;
x.imag()(2,2) = -0.00000000000000;
x.imag()(2,3) = 0.205129702522089;

x.imag()(3,0) = -1.08441894337449;
x.imag()(3,1) = -1.14635625342266;
x.imag()(3,2) = 0.205129702522089;
x.imag()(3,3) = -0.00000000000000;

y.real()(0,0) = 4.81562784930907;
y.real()(0,1) = -0.339731222392148;
y.real()(0,2) = -0.214319720979258;
y.real()(0,3) = 0.524107127885349;

y.real()(1,0) = -0.339731222392148;
y.real()(1,1) = 7.36354235698375;
y.real()(1,2) = -0.553927983436786;
y.real()(1,3) = 0.951404408649307;

y.real()(2,0) = -0.214319720979258;
y.real()(2,1) = -0.553927983436786;
y.real()(2,2) = 1.78008768533745;
y.real()(2,3) = -0.730246631850385;

y.real()(3,0) = 0.524107127885349;
y.real()(3,1) = 0.951404408649307;
y.real()(3,2) = -0.730246631850385;
y.real()(3,3) = 9.60215057284395;

y.imag()(0,0) = -0.00000000000000;
y.imag()(0,1) = 1.35016928394966;
y.imag()(0,2) = -0.359262708214312;
y.imag()(0,3) = -0.910512495060186;

y.imag()(1,0) = -1.35016928394966;
y.imag()(1,1) = -0.00000000000000;
y.imag()(1,2) = -0.517616473138836;
y.imag()(1,3) = -0.657235460367660;

y.imag()(2,0) = 0.359262708214312;
y.imag()(2,1) = 0.517616473138836;
y.imag()(2,2) = -0.00000000000000;
y.imag()(2,3) = -0.316090662865005;

y.imag()(3,0) = 0.910512495060186;
y.imag()(3,1) = 0.657235460367660;
y.imag()(3,2) = 0.316090662865005;
y.imag()(3,3) = -0.00000000000000;

result = eig(x,y);

cout << result.first << endl << endl;
cout << result.second << endl << endl;

以及C ++的结果:

(0.0295948,0.00562174) (-0.253532,0.0138373) (-0.395087,-0.0139696) (-0.0918132,-0.0788735)
(-0.00994614,-0.0213973) (-0.0118322,-0.0445976) (0.00993512,0.0127006) (0.0590018,-0.387949)
(0.0139485,-0.00832193) (0.363694,-0.446652) (-0.319168,0.376483) (-0.234447,-0.0859585)
(0.173697,0.268015) (0.0279387,-0.0103741) (0.0273701,0.0937148)  (-0.055169,0.0295393)

0.244233
2.24309
3.24152
18.664

MATLAB的结果:

>>  [A,B] = eig(Rj,Rt)

A =

  Columns 1 through 3

   0.0208 - 0.0218i   0.2425 + 0.0753i  -0.1242 + 0.3753i
  -0.0234 - 0.0033i  -0.0044 + 0.0459i   0.0150 - 0.0060i
   0.0006 - 0.0162i  -0.4964 + 0.2921i   0.2719 + 0.4119i
   0.3194 + 0.0000i  -0.0298 + 0.0000i   0.0976 + 0.0000i

  Column 4

  -0.0437 - 0.1129i
   0.2351 - 0.3142i
  -0.1661 - 0.1864i
  -0.0626 + 0.0000i

B =

   0.2442         0         0         0
        0    2.2431         0         0
        0         0    3.2415         0
        0         0         0   18.6640

Eigenvalues一样!很好,但是为什么Eigenvectors根本不相似?

解决方案

Eigen在这里没有问题.

实际上,对于第二个示例运行,Matlab和Eigen产生了非常相同的结果.请记住,在基本线性代数中,特征向量是由任意比例因子决定的. (即,如果v是特征向量,则对alpha * v成立,其中alpha是非零复数标量.)

不同的线性代数库计算不同的特征向量是很常见的,但这并不意味着两个代码之一是错误的:它只是意味着它们选择了不同的特征向量缩放比例.

编辑

精确复制由matlab选择的缩放比例的主要问题是eig(A,B) driver 例程,根据AB的不同属性,它可能会调用不同的库/例程,并应用额外的步骤,例如平衡矩阵等.通过快速检查您的示例,我会说在这种情况下,matlab强制执行以下条件:

  • all(imag(V(end,:))==0)(每个特征向量的最后一个分量是实数)

,但不施加其他限制.不幸的是,这意味着缩放不是唯一的,并且可能取决于所使用的广义特征向量算法的中间结果.在这种情况下,我无法为您提供精确复制matlab的建议:需要了解matlab的内部工作.

通常,在线性代数中,人们通常不太关心特征向量缩放,因为当特征向量仅用作中间结果时,这通常与解决的问题完全无关.

唯一要精确定义缩放比例的情况是,您将要给出特征值的图形表示.

Do anyone have any idea how can I rewrite eig(A,B) from Matlab used to calculate generalized eigenvector/eigenvalues? I've been struggling with this problem lately. So far:

Matlab definition of eig function I need:

[V,D] = eig(A,B) produces a diagonal matrix D of generalized
eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors so that A*V = B*V*D.
  1. So far I tried the Eigen library (http://eigen.tuxfamily.org/dox/classEigen_1_1GeneralizedSelfAdjointEigenSolver.html)

My implementation looks like this:

std::pair<Matrix4cd, Vector4d> eig(const Matrix4cd& A, const Matrix4cd& B)
{
    Eigen::GeneralizedSelfAdjointEigenSolver<Matrix4cd> solver(A, B);

    Matrix4cd V = solver.eigenvectors();
    Vector4d D = solver.eigenvalues();

    return std::make_pair(V, D);
}

But first thing that comes to my mind is, that I can't use Vector4cd as .eigenvalues() doesn't return complex values where Matlab does. Furthermore results of .eigenvectors() and .eigenvalues() for the same matrices are not the same at all:

C++:

Matrix4cd x;
Matrix4cd y;
pair<Matrix4cd, Vector4d> result;

for (int i = 0; i < 4; i++)
{
    for (int j = 0; j < 4; j++)
    {
        x.real()(i,j) = (double)(i+j+1+i*3);
        y.real()(i,j) = (double)(17 - (i+j+1+i*3));

        x.imag()(i,j) = (double)(i+j+1+i*3);
        y.imag()(i,j) = (double)(17 - (i+j+1+i*3));
    }
}
result = eig(x,y);
cout << result.first << endl << endl;
cout << result.second << endl << endl;

Matlab:

for i=1:1:4
    for j=1:1:4
        x(i,j) = complex((i-1)+(j-1)+1+((i-1)*3), (i-1)+(j-1)+1+((i-1)*3));
        y(i,j) = complex(17 - ((i-1)+(j-1)+1+((i-1)*3)), 17 - ((i-1)+(j-1)+1+((i-1)*3)));
    end
end

[A,B] = eig(x,y)

So I give eig the same 4x4 matrices holding values 1-16 ascending (x) and descending (y). But I receive different results, furthermore Eigen method returns double from eigenvalues while Matlab returns complex dobule. I also find out that there is other Eigen solver named GeneralizedEigenSolver. That one in the documentation (http://eigen.tuxfamily.org/dox/classEigen_1_1GeneralizedEigenSolver.html) has written that it solves A*V = B*V*D but to be honest I tried it and results (matrix sizes) are not the same size as Matlab so I got quite lost how it works (examplary results are on the website I've linked). It also has only .eigenvector method.

C++ results:

(-0.222268,-0.0108754) (0.0803437,-0.0254809) (0.0383264,-0.0233819) (0.0995482,0.00682079)
(-0.009275,-0.0182668) (-0.0395551,-0.0582127) (0.0550395,0.03434) (-0.034419,-0.0287563)
(-0.112716,-0.0621061) (-0.010788,0.10297) (-0.0820552,0.0294896) (-0.114596,-0.146384)
(0.28873,0.257988) (0.0166259,-0.0529934) (0.0351645,-0.0322988) (0.405394,0.424698)

-1.66983
-0.0733194
0.0386832
3.97933

Matlab results:

[A,B] = eig(x,y)


A =

  Columns 1 through 3

  -0.9100 + 0.0900i  -0.5506 + 0.4494i   0.3614 + 0.3531i
   0.7123 + 0.0734i   0.4928 - 0.2586i  -0.5663 - 0.4337i
   0.0899 - 0.4170i  -0.1210 - 0.3087i   0.0484 - 0.1918i
   0.1077 + 0.2535i   0.1787 + 0.1179i   0.1565 + 0.2724i

  Column 4

  -0.3237 - 0.3868i
   0.2338 + 0.7662i
   0.5036 - 0.3720i
  -0.4136 - 0.0074i


B =

  Columns 1 through 3

  -1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i  -1.0000 - 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i  -4.5745 - 1.8929i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i

  Column 4

   0.0000 + 0.0000i
   0.0000 + 0.0000i
   0.0000 + 0.0000i
  -0.3317 + 1.1948i
  1. Second try was with Intel IPP but it seems that it solves only A*V = V*D and support told me that it's not supported anymore.

https://software.intel.com/en-us/node/505270 (list of constructors for Intel IPP)

  1. I got suggestion to move from Intel IPP to MKL. I did it and hit the wall again. I tried to check all algorithms for Eigen but it seems that there are only A*V = V*D problems solved. I was checking lapack95.lib. The list of algorithms used by this library is available there:https://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_lapack_examples/index.htm#dsyev.htm

Somewhere on the web I could find topic on Mathworks when someone said that managed to solve my problem partially with usage of MKL:

http://jp.mathworks.com/matlabcentral/answers/40050-generalized-eigenvalue-and-eigenvectors-differences-between-matlab-eig-a-b-and-mkl-lapack-dsygv

Person said that he/she used dsygv algorithm but I can't locate anything like that on the web. Maybe it's a typo.

Anyone has any other proposition/idea how can I implement it? Or maybe point my mistake. I'd appreciate that.


EDIT:In comments I've received a hint that I was using Eigen solver wrong. My A matrix wasn't self-adjoint and my B matrix wasn't positive-definite. I took matrices from program I want to rewrite to C++ (from random iteration) and checked if they meet the requirements. They did:

Rj =

  1.0e+02 *

 Columns 1 through 3

   0.1302 + 0.0000i  -0.0153 + 0.0724i   0.0011 - 0.0042i
  -0.0153 - 0.0724i   1.2041 + 0.0000i  -0.0524 + 0.0377i
   0.0011 + 0.0042i  -0.0524 - 0.0377i   0.0477 + 0.0000i
  -0.0080 - 0.0108i   0.0929 - 0.0115i  -0.0055 + 0.0021i

  Column 4

  -0.0080 + 0.0108i
   0.0929 + 0.0115i
  -0.0055 - 0.0021i
   0.0317 + 0.0000i

Rt =

  Columns 1 through 3

   4.8156 + 0.0000i  -0.3397 + 1.3502i  -0.2143 - 0.3593i
  -0.3397 - 1.3502i   7.3635 + 0.0000i  -0.5539 - 0.5176i
  -0.2143 + 0.3593i  -0.5539 + 0.5176i   1.7801 + 0.0000i
   0.5241 + 0.9105i   0.9514 + 0.6572i  -0.7302 + 0.3161i

  Column 4

   0.5241 - 0.9105i
   0.9514 - 0.6572i
  -0.7302 - 0.3161i
   9.6022 + 0.0000i

As for Rj which is now my A - it is self-adjoint because Rj = Rj' and Rj = ctranspose(Rj). (http://mathworld.wolfram.com/Self-AdjointMatrix.html)

As for Rt which is now my B - it is Positive-Definite what is checked with method linked to me. (http://www.mathworks.com/matlabcentral/answers/101132-how-do-i-determine-if-a-matrix-is-positive-definite-using-matlab). So

>> [~,p] = chol(Rt)

p =

     0

I've rewritten matrices manually to C++ and performed eig(A,B) again with matrices meeting requirements:

Matrix4cd x;
Matrix4cd y;
pair<Matrix4cd, Vector4d> result;

x.real()(0,0) = 13.0163601949795;
x.real()(0,1) = -1.53172561296005;
x.real()(0,2) = 0.109594869350436;
x.real()(0,3) = -0.804231869422614;

x.real()(1,0) = -1.53172561296005;
x.real()(1,1) = 120.406645675346;
x.real()(1,2) = -5.23758765476463;
x.real()(1,3) = 9.28686785230169;

x.real()(2,0) = 0.109594869350436;
x.real()(2,1) = -5.23758765476463;
x.real()(2,2) = 4.76648319080400;
x.real()(2,3) = -0.552823839520508;

x.real()(3,0) = -0.804231869422614;
x.real()(3,1) = 9.28686785230169;
x.real()(3,2) = -0.552823839520508;
x.real()(3,3) = 3.16510496622613;

x.imag()(0,0) = -0.00000000000000;
x.imag()(0,1) = 7.23946944213164;
x.imag()(0,2) = 0.419181335323979;
x.imag()(0,3) = 1.08441894337449;

x.imag()(1,0) = -7.23946944213164;
x.imag()(1,1) = -0.00000000000000;
x.imag()(1,2) = 3.76849276970080;
x.imag()(1,3) = 1.14635625342266;

x.imag()(2,0) = 0.419181335323979;
x.imag()(2,1) = -3.76849276970080;
x.imag()(2,2) = -0.00000000000000;
x.imag()(2,3) = 0.205129702522089;

x.imag()(3,0) = -1.08441894337449;
x.imag()(3,1) = -1.14635625342266;
x.imag()(3,2) = 0.205129702522089;
x.imag()(3,3) = -0.00000000000000;

y.real()(0,0) = 4.81562784930907;
y.real()(0,1) = -0.339731222392148;
y.real()(0,2) = -0.214319720979258;
y.real()(0,3) = 0.524107127885349;

y.real()(1,0) = -0.339731222392148;
y.real()(1,1) = 7.36354235698375;
y.real()(1,2) = -0.553927983436786;
y.real()(1,3) = 0.951404408649307;

y.real()(2,0) = -0.214319720979258;
y.real()(2,1) = -0.553927983436786;
y.real()(2,2) = 1.78008768533745;
y.real()(2,3) = -0.730246631850385;

y.real()(3,0) = 0.524107127885349;
y.real()(3,1) = 0.951404408649307;
y.real()(3,2) = -0.730246631850385;
y.real()(3,3) = 9.60215057284395;

y.imag()(0,0) = -0.00000000000000;
y.imag()(0,1) = 1.35016928394966;
y.imag()(0,2) = -0.359262708214312;
y.imag()(0,3) = -0.910512495060186;

y.imag()(1,0) = -1.35016928394966;
y.imag()(1,1) = -0.00000000000000;
y.imag()(1,2) = -0.517616473138836;
y.imag()(1,3) = -0.657235460367660;

y.imag()(2,0) = 0.359262708214312;
y.imag()(2,1) = 0.517616473138836;
y.imag()(2,2) = -0.00000000000000;
y.imag()(2,3) = -0.316090662865005;

y.imag()(3,0) = 0.910512495060186;
y.imag()(3,1) = 0.657235460367660;
y.imag()(3,2) = 0.316090662865005;
y.imag()(3,3) = -0.00000000000000;

result = eig(x,y);

cout << result.first << endl << endl;
cout << result.second << endl << endl;

And the results of C++:

(0.0295948,0.00562174) (-0.253532,0.0138373) (-0.395087,-0.0139696) (-0.0918132,-0.0788735)
(-0.00994614,-0.0213973) (-0.0118322,-0.0445976) (0.00993512,0.0127006) (0.0590018,-0.387949)
(0.0139485,-0.00832193) (0.363694,-0.446652) (-0.319168,0.376483) (-0.234447,-0.0859585)
(0.173697,0.268015) (0.0279387,-0.0103741) (0.0273701,0.0937148)  (-0.055169,0.0295393)

0.244233
2.24309
3.24152
18.664

Results of MATLAB:

>>  [A,B] = eig(Rj,Rt)

A =

  Columns 1 through 3

   0.0208 - 0.0218i   0.2425 + 0.0753i  -0.1242 + 0.3753i
  -0.0234 - 0.0033i  -0.0044 + 0.0459i   0.0150 - 0.0060i
   0.0006 - 0.0162i  -0.4964 + 0.2921i   0.2719 + 0.4119i
   0.3194 + 0.0000i  -0.0298 + 0.0000i   0.0976 + 0.0000i

  Column 4

  -0.0437 - 0.1129i
   0.2351 - 0.3142i
  -0.1661 - 0.1864i
  -0.0626 + 0.0000i

B =

   0.2442         0         0         0
        0    2.2431         0         0
        0         0    3.2415         0
        0         0         0   18.6640

Eigenvalues are the same! Nice, but why Eigenvectors are not similar at all?

解决方案

There is no problem here with Eigen.

In fact for the second example run, Matlab and Eigen produced the very same result. Please remember from basic linear algebra that eigenvector are determined up to an arbitrary scaling factor. (I.e. if v is an eigenvector the same holds for alpha*v, where alpha is a non zero complex scalar.)

It is quite common that different linear algebra libraries compute different eigenvectors, but this does not mean that one of the two codes is wrong: it simply means that they choose a different scaling of the eigenvectors.

EDIT

The main problem with exactly replicating the scaling chosen by matlab is that eig(A,B) is a driver routine, which depending from the different properties of A and B may call different libraries/routines, and apply extra steps like balancing the matrices and so on. By quickly inspecting your example, I would say that in this case matlab is enforcing following condition:

  • all(imag(V(end,:))==0) (the last component of each eigenvector is real)

but not imposing other constraints. This unfortunately means that the scaling is not unique, and probably depends on intermediate results of the generalised eigenvector algorithm used. In this case I'm not able to give you advice on how to exactly replicate matlab: knowledge of the internal working of matlab is required.

As a general remark, in linear algebra usually one does not care too much about eigenvector scaling, since this is usually completely irrelevant for the problem solved, when the eigenvectors are just used as intermediate results.

The only case in which the scaling has to be defined exactly, is when you are going to give a graphic representation of the eigenvalues.

这篇关于将Matlab eig(A,B)(广义特征值/特征向量)重写为C/C ++的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 09:32