问题描述
因此,给定input = [1, 2, 3]
和k=2
,这将返回:
So given input = [1, 2, 3]
and k=2
this would return:
1 2
1 3
2 1
2 3
3 1
3 2
这是我所寻找的最接近的内容,但并非完全相同:"> http://algorithms.tutorialhorizon.com/print-all-combinations-of-subset-of-size-k-from-given-array/
This is the closest to what I am looking for, but not quite: http://algorithms.tutorialhorizon.com/print-all-combinations-of-subset-of-size-k-from-given-array/
function subsetsOfSize(a, used, startIndex, currentSize, k) {
if (currentSize === k) {
for (var i = 0; i < a.length; i++) {
if (used[i])
console.log(a[i]);
}
console.log('-');
return;
}
if (startIndex === a.length)
return;
used[startIndex] = true;
subsetsOfSize(a, used, startIndex+1, currentSize+1, k);
used[startIndex] = false;
subsetsOfSize(a, used, startIndex+1, currentSize, k);
}
var input = [1,2,3];
subsetsOfSize(input, Array(input.length).fill(false), 0, 0, 2);
^缺少诸如2 1
,3 1
,3 2
等的结果.
^ Missing results such as 2 1
, 3 1
, 3 2
, etc.
其次,我不确定我是否正确地命名了此问题,因为大小为k的子集的所有组合"的解决方案没有给出预期的答案.
Secondly, I am not sure if I am naming this problem correctly because solutions to "all combinations of subset of size k" do not give the expected answer.
推荐答案
一种递归解决方案,用于查找k个子集的排列(以伪代码表示):
A recursive solution to find k-subset permutations (in pseudo-code):
kSubsetPermutations(partial, set, k) {
for (each element in set) {
if (k equals 1) {
store partial + element
}
else {
make copy of set
remove element from copy of set
recurse with (partial + element, copy of set, k - 1)
}
}
}
下面是一个示例:
partial = [], set = [a,b,c,d,e], k = 3
partial = [a], set = [b,c,d,e], k = 2
partial = [a,b], set = [c,d,e], k = 1 -> [a,b,c], [a,b,d], [a,b,e]
partial = [a,c], set = [b,d,e], k = 1 -> [a,c,b], [a,c,d], [a,c,e]
partial = [a,d], set = [b,c,e], k = 1 -> [a,d,b], [a,d,c], [a,d,e]
partial = [a,e], set = [b,c,d], k = 1 -> [a,e,b], [a,e,c], [a,e,d]
partial = [b], set = [a,c,d,e], k = 2
partial = [b,a], set = [c,d,e], k = 1 -> [b,a,c], [b,a,d], [b,a,e]
partial = [b,c], set = [a,d,e], k = 1 -> [b,c,a], [b,c,d], [b,c,e]
partial = [b,d], set = [a,c,e], k = 1 -> [b,d,a], [b,d,c], [b,d,e]
partial = [b,e], set = [a,c,d], k = 1 -> [b,e,a], [b,e,c], [b,e,d]
partial = [c], set = [a,b,d,e], k = 2
partial = [c,a], set = [b,d,e], k = 1 -> [c,a,b], [c,a,d], [c,a,e]
partial = [c,b], set = [a,d,e], k = 1 -> [c,b,a], [c,b,d], [c,b,e]
partial = [c,d], set = [a,b,e], k = 1 -> [c,d,a], [c,d,b], [c,d,e]
partial = [c,e], set = [a,b,d], k = 1 -> [c,e,a], [c,e,b], [c,e,d]
partial = [d], set = [a,b,c,e], k = 2
partial = [d,a], set = [b,c,e], k = 1 -> [d,a,b], [d,a,c], [d,a,e]
partial = [d,b], set = [a,c,e], k = 1 -> [d,b,a], [d,b,c], [d,b,e]
partial = [d,c], set = [a,b,e], k = 1 -> [d,c,a], [d,c,b], [d,c,e]
partial = [d,e], set = [a,b,c], k = 1 -> [d,e,a], [d,e,b], [d,e,c]
partial = [e], set = [a,b,c,d], k = 2
partial = [e,a], set = [b,c,d], k = 1 -> [e,a,b], [e,a,c], [e,a,d]
partial = [e,b], set = [a,c,d], k = 1 -> [e,b,a], [e,b,c], [e,b,d]
partial = [e,c], set = [a,b,d], k = 1 -> [e,c,a], [e,c,b], [e,c,d]
partial = [e,d], set = [a,b,c], k = 1 -> [e,d,a], [e,d,b], [e,d,c]
function kSubsetPermutations(set, k, partial) {
if (!partial) partial = []; // set default value on first call
for (var element in set) {
if (k > 1) {
var set_copy = set.slice(); // slice() creates copy of array
set_copy.splice(element, 1); // splice() removes element from array
kSubsetPermutations(set_copy, k - 1, partial.concat([set[element]]));
} // a.concat(b) appends b to copy of a
else document.write("[" + partial.concat([set[element]]) + "] ");
}
}
kSubsetPermutations([1,2,3,4,5], 3);
这篇关于给定一个数组,如何生成子集大小k的所有组合?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!