问题描述
我正在努力寻找一种有效的方法来检索优化问题的解决方案.该解决方案由大约 200K 个变量组成,我希望在 Pandas DataFrame 中使用这些变量.在网上搜索之后,我发现访问变量的唯一方法是通过一个看起来像这样的 for 循环:
I am struggling to find an efficient way of retrieving the solution to an optimization problem. The solution consists of around 200K variables that I would like in a pandas DataFrame. After searching online the only approaches I found for accessing the variables was through a for loop which looks something like this:
instance = M.create_instance('input.dat') # reading in a datafile
results = opt.solve(instance, tee=True)
results.write()
instance.solutions.load_from(results)
for v in instance.component_objects(Var, active=True):
print ("Variable",v)
varobject = getattr(instance, str(v))
for index in varobject:
print (" ",index, varobject[index].value)
我知道我可以使用这个 for 循环将它们存储在数据帧中,但这效率很低.我发现了如何使用
I know I can use this for loop to store them in a dataframe but this is pretty inefficient.I found out how to access the indexes by using
import pandas as pd
index = pd.DataFrame(instance.component_objects(Var, active=True))
但我不知道如何得到解决方案
But I dont know how to get the solution
推荐答案
其实有一个非常简单优雅的解决方案,使用方法 pandas.DataFrame.from_dict
结合 Var.extract_values()
方法.
There is actually a very simple and elegant solution, using the method pandas.DataFrame.from_dict
combined with the Var.extract_values()
method.
from pyomo.environ import *
import pandas as pd
m = ConcreteModel()
m.N = RangeSet(5)
m.x = Var(m.N, rule=lambda _, el: el**2) # x = [1,4,9,16,25]
df = pd.DataFrame.from_dict(m.x.extract_values(), orient='index', columns=[str(m.x)])
print(df)
收益
x
1 1
2 4
3 9
4 16
5 25
请注意,对于 Var
,我们可以同时使用 get_values()
和 extract_values()
,它们的作用似乎相同.对于 Param
,只有 extract_values()
.
Note that for Var
we can use both get_values()
and extract_values()
, they seem to do the same. For Param
there is only extract_values()
.
这篇关于在不使用 for 循环的情况下检索 Pyomo 解决方案的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!