问题描述
我在熊猫数据框中有一个对象列,其格式为dd/mm/yyyy,我想使用to_datetime进行转换.
I have an object column in a pandas dataframe in the format dd/mm/yyyy, that I want to convert with to_datetime.
我尝试使用以下方法将其转换为日期时间:
I tried to convert it to datetime using the below:
df['Time stamp'] = pd.to_datetime(df['Time stamp'], format= '%d/%m/%Y')
我收到以下错误:
TypeError: Unrecognized value type: <class 'str'>
ValueError: unconverted data remains:
这是否意味着某处有空白行,我已经检查了原始的csv,但看不到它.
Does this mean that there is a blank row somewhere, I have checked the original csv and I cannot see one.
推荐答案
这意味着您有多余的空间.尽管pd.to_datetime
通常在不指定任何格式的情况下很好地解析日期,但是当您实际指定格式时,它必须完全匹配.
It means you have an extra space. Though pd.to_datetime
is very good at parsing dates normally without any format specified, when you actually specify a format, it has to match EXACTLY.
您可以通过添加.str.strip()
在转换之前删除多余的空格来解决您的问题.
You can likely solve your issue by adding .str.strip()
to remove the extra whitespace before converting.
import pandas as pd
df['Time stamp'] = pd.to_datetime(df['Time stamp'].str.strip(), format='%d/%m/%Y')
或者,您可以利用dayfirst=True
参数来利用其解析各种格式的日期的功能
Alternatively, you can take advantage of its ability to parse various formats of dates by using the dayfirst=True
argument
df['Time stamp'] = pd.to_datetime(df['Time stamp'], dayfirst=True)
示例:
import pandas as pd
df = pd.DataFrame({'Time stamp': ['01/02/1988', '01/02/1988 ']})
pd.to_datetime(df['Time stamp'], format= '%d/%m/%Y')
pd.to_datetime(df['Time stamp'].str.strip(), format='%d/%m/%Y')
#0 1988-02-01
#1 1988-02-01
#Name: Time stamp, dtype: datetime64[ns]
pd.to_datetime(df['Time stamp'], dayfirst=True)
#0 1988-02-01
#1 1988-02-01
#Name: Time stamp, dtype: datetime64[ns]
这篇关于将Pandas数据框中的对象列转换为日期时间的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!