本文介绍了以透视方式绘制一系列以3D投影的2D图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想绘制一个似然分布,基本上是一个 NxT 矩阵,其中每一行代表每个时间步长 t(t = 0 ... T)中某个变量的分布,因此我可以可视化最大似然估计会产生的轨迹.

I'd like to plot a likelihood distribution, basically an NxT matrix, where each row represents a distribution on some variable in each timestep t (t=0...T), so I could visualize the trajectory which a Maximum Likelihood Estimation would yield.

我想象有几个2D图,一个在另一个图的前面-像这样:

I imagine several 2D plots, one in front of the other - something like this:

基于我已经尝试过:

def TrajectoryPlot(P):
    P=P[0:4]
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    def cc(arg):
        return colorConverter.to_rgba(arg, alpha=0.6)
    xs = np.arange(0, len(P[0]))
    verts = []
    zs = [0.0, 1.0, 2.0, 3.0, 4.0]
    for i in range(len(P)):
        print(i)
        verts.append(list(zip(xs,  P[i])))
    poly = PolyCollection(verts, facecolors=[cc('r'), cc('g'), cc('b'),
                                             cc('y')])
    poly.set_alpha(0.7)
    ax.add_collection3d(poly, zs=zs, zdir='y')
    ax.set_xlabel('X')
    ax.set_ylabel('Likelihood')
    ax.set_zlabel('Time')
    plt.show()

但这还行不通.

推荐答案

fill_between例程还返回一个PolyCollection对象,因此您可以使用fill_between并使用add_collection3d进行添加:

The fill_between routine also returns a PolyCollection object, so you could use fill_between and add that using add_collection3d:

import matplotlib.pylab as pl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

x   = np.linspace(1,5,100)
y1  = np.ones(x.size)
y2  = np.ones(x.size)*2
y3  = np.ones(x.size)*3
z   = np.sin(x/2)

pl.figure()
ax = pl.subplot(projection='3d')
ax.plot(x, y1, z, color='r')
ax.plot(x, y2, z, color='g')
ax.plot(x, y3, z, color='b')

ax.add_collection3d(pl.fill_between(x, 0.95*z, 1.05*z, color='r', alpha=0.3), zs=1, zdir='y')
ax.add_collection3d(pl.fill_between(x, 0.90*z, 1.10*z, color='g', alpha=0.3), zs=2, zdir='y')
ax.add_collection3d(pl.fill_between(x, 0.85*z, 1.15*z, color='b', alpha=0.3), zs=3, zdir='y')

ax.set_xlabel('Day')
ax.set_zlabel('Resistance (%)')

这篇关于以透视方式绘制一系列以3D投影的2D图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 04:10