问题描述
如何以幂形式计算给定曲线的控制点?假设我有 p(t)=(x(t),y(t)) 和 4 个控制点.
x(t) = 2ty(t) = (t^3)+3(t^2)
您始终可以从幂基转换为 Bernstein 基.这总是可行的,并且会给你准确的结果.请参阅此链接的第 3.3 节(
其中 M 是 Berstein 基的阶数,0
以常见的三次 Berstein 基(其中 M=3)为例,我们将有
How do I compute the control points given a curve in the form of power form? Say I have p(t)=(x(t),y(t)) and 4 control points.
x(t) = 2t
y(t) = (t^3)+3(t^2)
You can always convert from power basis to Bernstein basis. This is always doable and will give you the precise result. Refer to section 3.3 of this link (http://cagd.cs.byu.edu/~557/text/ch3.pdf) for details.
EDIT:Since the above link is no longer available, I am listing the formula below:
where M is the degree of the Berstein basis, 0 <= k <= M and b_i,k=0 if i < k.
Using the common cubic Berstein basis (where M=3) as an example, we will have
这篇关于将多项式曲线转换为贝塞尔曲线控制点的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!