本文介绍了将多项式曲线转换为贝塞尔曲线控制点的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

在给定曲线以幂形式的情况下,如何计算控制点?假设我有p(t)=(x(t),y(t))和4个控制点.

x(t) = 2t
y(t) = (t^3)+3(t^2)
解决方案

您始终可以从幂基础转换为伯恩斯坦基础.这始终是可行的,并将为您提供精确的结果.请参阅此链接的第3.3节( http://cagd.cs.byu .edu/〜557/text/ch3.pdf ).

由于上述链接不再可用,因此我在下面列出了公式:

式中,M是贝斯坦数的基数,如果i <0,则0 <= k <= M,b_i,k = 0. k.

以公共立方Berstein基础(其中M = 3)为例,我们将

How do I compute the control points given a curve in the form of power form? Say I have p(t)=(x(t),y(t)) and 4 control points.

x(t) = 2t
y(t) = (t^3)+3(t^2)
解决方案

You can always convert from power basis to Bernstein basis. This is always doable and will give you the precise result. Refer to section 3.3 of this link (http://cagd.cs.byu.edu/~557/text/ch3.pdf) for details.

EDIT:Since the above link is no longer available, I am listing the formula below:

where M is the degree of the Berstein basis, 0 <= k <= M and b_i,k=0 if i < k.

Using the common cubic Berstein basis (where M=3) as an example, we will have

这篇关于将多项式曲线转换为贝塞尔曲线控制点的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 01:18