本文介绍了给定一个点,找到与直角相交的直线的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 这是基本的图形几何图形和/或触发器,我觉得这很愚蠢,但我不记得这是怎么回事。所以: 我有一条由两点(x1,y1)和(x2,y2)定义的线。 我有第三点(xp,yp),它位于别处。 我想计算点x',y'),它们位于#1中的某条线上,因此,当与#2中的点相连接时,会创建一条垂直于第一条线的新线。 谢谢。解决方案通过考虑第一个泛型点(x,y) code>(x1,y1)至(x2,y2): x = x1 + t *(x2 - x1)y = y1 + t *(y2 - y1) 并计算从这个点到(code>(xp,yp) code $ $ b $ pre $ E =(x - xp)** 2 +(y - yp)** 2 代替 x 和 y 给出 E =(x1 + t *(x2 - x1) - xp )** 2 + (y1 + t *(y2 - y1) - yp)** 2 然后找到这个距离的最小值变化 t 我们派生 E 相对于 t dE / dt = 2 * - xp)*(x2 - x1)+ 2 *(y1 + t *(y2 - y1) - yp)*(y2 - y1) t *((x2-x1)** 2 +(y1-y2)** 2)) pre> 寻找这个导数是零的时候,我们得到一个明确的方程: t t =((xp - x1)*(x2 - x1)+(yp - y1)*(y2 - y1))/ (x2 - x1)** 2 +(y2 - y1)** 2) 点可以在(x,y)。的定义中使用 t 的值来计算。 b $ b 使用向量表示法,这与Gareth提出的公式完全相同...... t =< p - p1,p2 - p1> /< p2-p1,p2-p1> 其中< a,b> 表示点积操作 ax * bx + ay * by 。 还要注意,在n维空间。This is basic graphics geometry and/or trig, and I feel dumb for asking it, but I can't remember how this goes. So:I have a line defined by two points (x1, y1) and (x2, y2).I have a third point (xp, yp) which lies somewhere else.I want to compute the point (x', y') that lies somewhere along the line in #1, such that, when joined with the point from #2, creates a new perpendicular line to the first line.Thanks. 解决方案 You can find that point by considering first a generic point (x, y) along the line from (x1, y1) to (x2, y2):x = x1 + t*(x2 - x1)y = y1 + t*(y2 - y1)and the computing the (squared) distance from this point from (xp, yp)E = (x - xp)**2 + (y - yp)**2that substituting the definition of x and y givesE = (x1 + t*(x2 - x1) - xp)**2 + (y1 + t*(y2 - y1) - yp)**2then to find the minimum of this distance varying t we derive E with respect to tdE/dt = 2*(x1 + t*(x2 - x1) - xp)*(x2 - x1) + 2*(y1 + t*(y2 - y1) - yp)*(y2 - y1)that after some computation givesdE/dt = 2*((x1 - xp)*(x2 - x1) + (y1 - yp)*(y2 - y1) + t*((x2 - x1)**2 + (y1 - y2)**2))looking for when this derivative is zero we get an explicit equation for tt = ((xp - x1)*(x2 - x1) + (yp - y1)*(y2 - y1)) / ((x2 - x1)**2 + (y2 - y1)**2)so the final point can be computed using that value for t in the definition of (x, y).Using vector notation this is exactly the same formula suggested by Gareth...t = <p - p1, p2 - p1> / <p2 - p1, p2 - p1>where the notation <a, b> represents the dot product operation ax*bx + ay*by.Note also that the very same formula works in an n-dimensional space. 这篇关于给定一个点,找到与直角相交的直线的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-20 01:13