问题描述
我需要一些帮助计算圆周率。我想写一个python程序,将计算圆周率至X位。我已经试了从Python邮件列表,它是慢于我的使用。我已阅读有关高斯 - 勒让德算法,我已经尝试过,但没有成功移植到了Python。
我从阅读此处,我会AP preciate任何输入到哪里我错了!
它输出:0.163991276262
从__future__进口师
进口数学
DEF广场(X):返回X * X
a = 1时
B = 1 /的Math.sqrt(2)
T = 1/4
X = 1
因为我在范围内(1000):
Y = A
一个=(A + B)/ 2
B =的Math.sqrt(B * Y)
T = - X *平方((Y-A))
X = 2 * X
PI =(平方((A + B)))/ 4 * T
打印圆周率
进行raw_input()
-
您忘了周围的
4 * T
括号:PI =(A + B)** 2 /(4 * T)
-
您可以使用
十进制
以更高的precision进行计算。#!的/ usr /斌/包膜蟒蛇 从__future__进口with_statement 进口十进制 高清pi_gauss_legendre(): D = decimal.Decimal 与decimal.localcontext(),为CTX: CTX。preC + = 2 的a,b,T,P = 1,1 / D(2).sqrt(),1 / D(4),1 PI =无 而1: 一个=(A + B)/ 2 B =(A * B).sqrt() 笔 - = P *(一 - 一)*(一 - 一) 一个,P =一个,2 * P piold =圆周率 圆周率=(A + B)*(A + B)/(4 * t)的 如果PI == piold:#内给予precision等于 打破 返回+ PI decimal.getcontext()。preC = 100 打印pi_gauss_legendre()
输出:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208 \
998628034825342117068
I need some help calculating Pi. I am trying to write a python program that will calculate Pi to X digits. I have tried several from the python mailing list, and it is to slow for my use.I have read about the Gauss-Legendre Algorithm, and I have tried porting it to Python with no success.
I am reading from Here, and I would appreciate any input as to where I am going wrong!
It outputs: 0.163991276262
from __future__ import division
import math
def square(x):return x*x
a = 1
b = 1/math.sqrt(2)
t = 1/4
x = 1
for i in range(1000):
y = a
a = (a+b)/2
b = math.sqrt(b*y)
t = t - x * square((y-a))
x = 2* x
pi = (square((a+b)))/4*t
print pi
raw_input()
You forgot parentheses around
4*t
:pi = (a+b)**2 / (4*t)
You can use
decimal
to perform calculation with higher precision.#!/usr/bin/env python from __future__ import with_statement import decimal def pi_gauss_legendre(): D = decimal.Decimal with decimal.localcontext() as ctx: ctx.prec += 2 a, b, t, p = 1, 1/D(2).sqrt(), 1/D(4), 1 pi = None while 1: an = (a + b) / 2 b = (a * b).sqrt() t -= p * (a - an) * (a - an) a, p = an, 2*p piold = pi pi = (a + b) * (a + b) / (4 * t) if pi == piold: # equal within given precision break return +pi decimal.getcontext().prec = 100 print pi_gauss_legendre()
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208\
998628034825342117068
这篇关于高斯 - 勒让德算法蟒蛇的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!