本文介绍了为什么MFunctor的'提升机'没有'Monad n'限制?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 我有一个协程变换器 data步骤y m a =完成a | Yield y(CoT yma) data CoT yma = CoT(m(Step yma)) 与 Monad 实例 unCoT :: CoT yma - > m(步骤y m a) unCoT(CoT m)= m 实例Monad m => Monad(CoT y m)其中 return = CoT。返回。完成 CoT x>> = f = CoT $ do x'< - x case x'of 完成a - > unCoT(f a)收益y x' - >如果我定义了一个 $ b $ return $(yield y(x'>> = f)) c $ c> MFunctor class with Monad m 和 Monad n 约束我可以定义 hoist class MFunctor t其中 hoist ::(Monad n,Monad m)=> (全部a - > a a) - > t m b - > tnb instance MFunctor(CoT y)其中 hoist f(CoT m)= CoT $ do step return(case Done x - >完成x 收益y m' - >收益y(hoist f m')) 但是 mmorph 的 hoist 只有一个 Monad m 约束。我可以在没有它的情况下定义我的 hoist ,或者这是缺乏一般性的 MFunctor ? 编辑:我研究过它是可能的!但我的问题仍然存在:我们确定这里不缺乏一般性吗? instance MFunctor(CoT y)其中提升f(CoT m)= CoT $ f $ do step return(完成x的情况步骤 - >完成x 收益y m' - >收益y(hoist f m')) 解决方案 mmorph 是在 pipes-3。* 系列(它曾经是一个内部的 pipes 模块),它具有函数像这样: raise ::(Monad m,MFunctor t1,MonadTrans t2) => ; t1 m r - > t1(t2 m)r raise = hoist lift 如果添加 Monad n 约束到 hoist 那么你必须添加一个 Monad(t2 m)约束为 raise 。我通常会尽量减少库中的约束,并且找不到需要 Monad n 约束的任何 MFunctor 实例,所以我删除了它。 附注: CoT yma 与来自 pipes 的生产者yma ,它已经有一个 MFunctor 实例。 I have a coroutine transformerdata Step y m a = Done a | Yield y (CoT y m a)data CoT y m a = CoT (m (Step y m a))with Monad instanceunCoT :: CoT y m a -> m (Step y m a)unCoT (CoT m) = minstance Monad m => Monad (CoT y m) where return = CoT . return . Done CoT x >>= f = CoT $ do x' <- x case x' of Done a -> unCoT (f a) Yield y x' -> return (Yield y (x' >>= f))If I define an MFunctor class with Monad m and Monad n constraints I can define hoistclass MFunctor t where hoist :: (Monad n, Monad m) => (forall a. m a -> n a) -> t m b -> t n binstance MFunctor (CoT y) where hoist f (CoT m) = CoT $ do step <- f m return (case step of Done x -> Done x Yield y m' -> Yield y (hoist f m'))But mmorph's hoist only has a Monad m constraint. Can I define my hoist without it, or is this a lack of generality of MFunctor?EDIT: I worked out it is possible! But my question still stands: are we sure there's no lack of generality here?instance MFunctor (CoT y) where hoist f (CoT m) = CoT $ f $ do step <- m return (case step of Done x -> Done x Yield y m' -> Yield y (hoist f m')) 解决方案 mmorph was developed in the context of the pipes-3.* series (it used to be an internal pipes module), which had functions like this:raise :: (Monad m, MFunctor t1, MonadTrans t2) => t1 m r -> t1 (t2 m) rraise = hoist liftIf you add the Monad n constraint to hoist then you have to add a Monad (t2 m) constraint to raise. I generally try to minimize constraints in my libraries and I couldn't find any MFunctor instances that needed the Monad n constraint, so I removed it.Side note: CoT y m a is the same thing as Producer y m a from pipes, which already has an MFunctor instance. 这篇关于为什么MFunctor的'提升机'没有'Monad n'限制?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 10-26 22:09