问题描述
我有2个矩阵,首先是稀疏的整数系数.
I've got 2 matrices, first of which is sparse with integer coefficients.
import sympy
A = sympy.eye(2)
A.row_op(1, lambda v, j: v + 2*A[0, j])
第二个是象征性的,我在它们之间执行一个操作:
The 2nd is symbolic, and I perform an operation between them:
M = MatrixSymbol('M', 2, 1)
X = A * M + A.col(1)
现在,我要获取元素式方程:
Now, what I'd like is to get the element-wise equations:
X_{0,0} = A_{0,0}
X_{0,1} = 2*A_{0,0} + A_{0,1}
一种方法是在sympy
中指定一个矩阵,每个元素都是一个单独的符号:
One way to do this is specifying a matrix in sympy
with each element being an individual symbol:
rows = []
for i in range(shape[0]):
col = []
for j in range(shape[1]):
col.append(Symbol('%s_{%s,%d}' % (name,i,j)))
rows.append(col)
M = sympy.Matrix(rows)
是否可以使用上面的MatrixSymbol
进行处理,然后获得结果的元素方程式?
Is there a way to do it with the MatrixSymbol
above, and then get the resulting element-wise equations?
推荐答案
结果是,这个问题的答案很明显:
Turns out, this question has a very obvious answer:
MatrixSymbol
进行索引矩阵,即:
MatrixSymbol
s in sympy can be indexed like a matrix, i.e.:
X[i,j]
给出了基于元素的方程式.
gives the element-wise equations.
如果要对一个以上的元素进行子集化,则必须首先将MatrixSymbol
转换为sympy.Matrix
类:
If one wants to subset more than one element, the MatrixSymbol
must first be converted to a sympy.Matrix
class:
X = sympy.Matrix(X)
X # lists all indices as `X[i, j]`
X[3:4,2] # arbitrary subsets are supported
请注意,这不允许对numpy
数组/矩阵进行所有操作(例如使用布尔等效项进行索引),因此最好创建带有sympy
符号的numpy
数组:
Note that this does not allow all operations of a numpy
array/matrix (such as indexing with a boolean equivalent), so you might be better of creating a numpy
array with sympy
symbols:
ijstr = lambda i,j: sympy.Symbol(name+"_{"+str(int(i))+","+str(int(j))+"}")
matrix = np.matrix(np.fromfunction(np.vectorize(ijstr), shape))
这篇关于在Sympy中获取矩阵乘法的逐元素方程的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!