问题描述
我有一个Sqlite数据库,其中包含以下类型的架构:
I have a Sqlite database that contains following type of schema:
termcount(doc_num, term , count)
此表包含术语及其在文档中的各自计数.喜欢
This table contains terms with their respective counts in the document.like
(doc1 , term1 ,12)
(doc1, term 22, 2)
.
.
(docn,term1 , 10)
该矩阵可以被视为稀疏矩阵,因为每个文档都包含很少的具有非零值的项.
This matrix can be considered as sparse matrix as each documents contains very few terms that will have a non-zero value.
如何使用numpy从稀疏矩阵中创建密集矩阵,因为我必须使用余弦相似度来计算文档之间的相似度.
How would I create a dense matrix from this sparse matrix using numpy as I have to calculate the similarity among documents using cosine similarity.
这个密集矩阵看起来像一个表格,其第一列为docid,所有术语将列为第一行,其余单元格将包含计数.
This dense matrix will look like a table that have docid as the first column and all the terms will be listed as the first row.and remaining cells will contain counts.
推荐答案
我使用Pandas解决了此问题.因为我们要保留文档ID和术语ID.
I solved this problem using Pandas. Because we want to keep the document ids and term ids.
from pandas import DataFrame
# A sparse matrix in dictionary form (can be a SQLite database). Tuples contains doc_id and term_id.
doc_term_dict={('d1','t1'):12, ('d2','t3'):10, ('d3','t2'):5}
#extract all unique documents and terms ids and intialize a empty dataframe.
rows = set([d for (d,t) in doc_term_dict.keys()])
cols = set([t for (d,t) in doc_term_dict.keys()])
df = DataFrame(index = rows, columns = cols )
df = df.fillna(0)
#assign all nonzero values in dataframe
for key, value in doc_term_dict.items():
df[key[1]][key[0]] = value
print df
输出:
t2 t3 t1
d2 0 10 0
d3 5 0 0
d1 0 0 12
这篇关于在numpy python中从稀疏矩阵生成密集矩阵的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!