问题描述
从我发现的内容来看,还有另外1个这样的问题( Speed-up nested cross -validation ),但是在尝试了该站点和Microsoft上建议的多个修复程序后,安装MPI不适用于我,所以我希望有另一个软件包或对此问题的解答.
From what I've found there is 1 other question like this (Speed-up nested cross-validation) however installing MPI does not work for me after trying several fixes also suggested on this site and microsoft, so I am hoping there is another package or answer to this question.
我正在寻找比较多种算法和进行网格搜索的各种参数(可能是太多参数?)的方法,除了mpi4py之外还有什么方法可以加快我的代码的运行速度?据我了解,我不能使用n_jobs = -1,因为那是不嵌套的?
I am looking to compare multiple algorithms and gridsearch a wide range of parameters (maybe too many parameters?), what ways are there besides mpi4py which could speed up running my code? As I understand it I cannot use n_jobs=-1 as that is then not nested?
还要注意,我无法在下面尝试查看的许多参数上运行它(运行时间超过了我的时间).如果我给每个模型仅两个参数进行比较,则只有2小时后才会有结果.另外,我在252行和25个特征列以及4个类别变量的数据集上运行此代码,以预测(确定",可能",可能"或未知")某个基因(具有252个基因)是否影响疾病.使用SMOTE会将样本大小增加到420,这样就可以使用了.
Also to note, I have not been able to run this on the many parameters I am trying to look at below (runs longer than I have time). Only have results after 2 hours if I give each model only 2 parameters to compare. Also I run this code on a dataset of 252 rows and 25 feature columns with 4 categorical variables to predict ('certain', 'likely', 'possible', or 'unknown') whether a gene (with 252 genes) affects a disease. Using SMOTE increases the sample size to 420 which is then what goes into use.
dataset= pd.read_csv('data.csv')
data = dataset.drop(["gene"],1)
df = data.iloc[:,0:24]
df = df.fillna(0)
X = MinMaxScaler().fit_transform(df)
le = preprocessing.LabelEncoder()
encoded_value = le.fit_transform(["certain", "likely", "possible", "unlikely"])
Y = le.fit_transform(data["category"])
sm = SMOTE(random_state=100)
X_res, y_res = sm.fit_resample(X, Y)
seed = 7
logreg = LogisticRegression(penalty='l1', solver='liblinear',multi_class='auto')
LR_par= {'penalty':['l1'], 'C': [0.5, 1, 5, 10], 'max_iter':[500, 1000, 5000]}
rfc =RandomForestClassifier()
param_grid = {'bootstrap': [True, False],
'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4,25],
'min_samples_split': [2, 5, 10, 25],
'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]}
mlp = MLPClassifier(random_state=seed)
parameter_space = {'hidden_layer_sizes': [(10,20), (10,20,10), (50,)],
'activation': ['tanh', 'relu'],
'solver': ['adam', 'sgd'],
'max_iter': [10000],
'alpha': [0.1, 0.01, 0.001],
'learning_rate': ['constant','adaptive']}
gbm = GradientBoostingClassifier(min_samples_split=25, min_samples_leaf=25)
param = {"loss":["deviance"],
"learning_rate": [0.15,0.1,0.05,0.01,0.005,0.001],
"min_samples_split": [2, 5, 10, 25],
"min_samples_leaf": [1, 2, 4,25],
"max_depth":[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
"max_features":['auto', 'sqrt'],
"criterion": ["friedman_mse"],
"n_estimators":[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]
}
svm = SVC(gamma="scale", probability=True)
tuned_parameters = {'kernel':('linear', 'rbf'), 'C':(1,0.25,0.5,0.75)}
def baseline_model(optimizer='adam', learn_rate=0.01):
model = Sequential()
model.add(Dense(100, input_dim=X_res.shape[1], activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(50, activation='relu')) #8 is the dim/ the number of hidden units (units are the kernel)
model.add(Dense(4, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
keras = KerasClassifier(build_fn=baseline_model, batch_size=32, epochs=100, verbose=0)
learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3]
optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam']
kerasparams = dict(optimizer=optimizer, learn_rate=learn_rate)
inner_cv = KFold(n_splits=10, shuffle=True, random_state=seed)
outer_cv = KFold(n_splits=10, shuffle=True, random_state=seed)
models = []
models.append(('GBM', GridSearchCV(gbm, param, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('RFC', GridSearchCV(rfc, param_grid, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('LR', GridSearchCV(logreg, LR_par, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('SVM', GridSearchCV(svm, tuned_parameters, cv=inner_cv, iid=False, n_jobs=1)))
models.append(('MLP', GridSearchCV(mlp, parameter_space, cv=inner_cv,iid=False, n_jobs=1)))
models.append(('Keras', GridSearchCV(estimator=keras, param_grid=kerasparams, cv=inner_cv,iid=False, n_jobs=1)))
results = []
names = []
scoring = 'accuracy'
X_train, X_test, Y_train, Y_test = train_test_split(X_res, y_res, test_size=0.2, random_state=0)
for name, model in models:
nested_cv_results = model_selection.cross_val_score(model, X_res, y_res, cv=outer_cv, scoring=scoring)
results.append(nested_cv_results)
names.append(name)
msg = "Nested CV Accuracy %s: %f (+/- %f )" % (name, nested_cv_results.mean()*100, nested_cv_results.std()*100)
print(msg)
model.fit(X_train, Y_train)
print('Test set accuracy: {:.2f}'.format(model.score(X_test, Y_test)*100), '%')
print("Best Parameters: \n{}\n".format(model.best_params_))
print("Best CV Score: \n{}\n".format(model.best_score_))
作为一个例子,大多数数据集都是二进制的,看起来像这样:
As an example, most of the dataset is binary and looks like this:
gene Tissue Druggable Eigenvalue CADDvalue Catalogpresence Category
ACE 1 1 1 0 1 Certain
ABO 1 0 0 0 0 Likely
TP53 1 1 0 0 0 Possible
任何有关如何加快此速度的指南将不胜感激.
Any guidance on how I could speed this up would be appreciated.
我也尝试过使用dask进行并行处理,但是我不确定这样做是否正确,而且运行似乎没有更快:
I have also tried using parallel processing with dask, but I am not sure I am doing it right, and it doesn't seem to run any faster:
for name, model in models:
with joblib.parallel_backend('dask'):
nested_cv_results = model_selection.cross_val_score(model, X_res, y_res, cv=outer_cv, scoring=scoring)
results.append(nested_cv_results)
names.append(name)
msg = "Nested CV Accuracy %s: %f (+/- %f )" % (name, nested_cv_results.mean()*100, nested_cv_results.std()*100)
print(msg)
model.fit(X_train, Y_train)
print('Test set accuracy: {:.2f}'.format(model.score(X_test, Y_test)*100), '%')
#print("Best Estimator: \n{}\n".format(model.best_estimator_))
print("Best Parameters: \n{}\n".format(model.best_params_))
print("Best CV Score: \n{}\n".format(model.best_score_)) #average of all cv folds for a single combination of the parameters you specify
还要注意减少网格搜索,例如,我尝试使用每个模型5个参数,但是这仍然需要几个小时才能完成,因此,如果有效率方面的任何建议,则在减少数量的同时会有所帮助我将不胜感激.
also to note with reducing the gridsearch, I have tried with for example 5 parameters per model however this still takes several hours to complete, so whilst trimming down the number will be helpful, if there is any advice for efficency beyond that I would be grateful.
推荐答案
两件事:
-
而不是
GridSearch
尝试使用HyperOpt
-这是一个Python库串行和并行优化.
Instead of
GridSearch
try usingHyperOpt
- it's a Python library for serial and parallel optimization.
我将通过使用 UMAP 或 PCA . UMAP可能是更好的选择.
I would reduce the dimensionality by using UMAP or PCA. Probably UMAP is the better choice.
应用SMOTE
后:
import umap
dim_reduced = umap.UMAP(
min_dist=min_dist,
n_neighbors=neighbours,
random_state=1234,
).fit_transform(smote_output)
然后您可以使用dim_reduced
进行火车测试.
And then you can use dim_reduced
for the train test split.
减小维数将有助于消除数据中的噪声,而无需处理25个功能,而是将它们降低到2个(使用UMAP)或选择的组件数量(使用PCA).这应该对性能产生重大影响.
Reducing the dimensionality will help to remove noise from the data and instead of dealing with 25 features you'll bring them down to 2 (using UMAP) or the number of components you choose (using PCA). Which should have significant implications on the performance.
这篇关于如何在python中加快嵌套交叉验证?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!