问题描述
我想用Python实现自己的高斯内核,只是为了锻炼.我正在使用:sklearn.svm.SVC(kernel=my_kernel)
,但我真的不明白发生了什么事.
I'd like to implement my own Gaussian kernel in Python, just for exercise. I'm using:sklearn.svm.SVC(kernel=my_kernel)
but I really don't understand what is going on.
我希望函数my_kernel以X
矩阵的列作为参数来调用,而不是以X
,X
作为参数来调用它.查看示例并不清楚.
I expect the function my_kernel to be called with the columns of the X
matrix as parameters, instead I got it called with X
, X
as arguments. Looking at the examples things are not clearer.
我想念什么?
这是我的代码:
'''
Created on 15 Nov 2014
@author: Luigi
'''
import scipy.io
import numpy as np
from sklearn import svm
import matplotlib.pyplot as plt
def svm_class(fileName):
data = scipy.io.loadmat(fileName)
X = data['X']
y = data['y']
f = svm.SVC(kernel = 'rbf', gamma=50, C=1.0)
f.fit(X,y.flatten())
plotData(np.hstack((X,y)), X, f)
return
def plotData(arr, X, f):
ax = plt.subplot(111)
ax.scatter(arr[arr[:,2]==0][:,0], arr[arr[:,2]==0][:,1], c='r', marker='o', label='Zero')
ax.scatter(arr[arr[:,2]==1][:,0], arr[arr[:,2]==1][:,1], c='g', marker='+', label='One')
h = .02 # step size in the mesh
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
Z = f.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z)
plt.xlim(np.min(arr[:,0]), np.max(arr[:,0]))
plt.ylim(np.min(arr[:,1]), np.max(arr[:,1]))
plt.show()
return
def gaussian_kernel(x1,x2):
sigma = 0.5
return np.exp(-np.sum((x1-x2)**2)/(2*sigma**2))
if __name__ == '__main__':
fileName = 'ex6data2.mat'
svm_class(fileName)
推荐答案
在阅读完上述答案以及其他一些问题和网站后( 1 , 2 ,, 4 ,),我在 svm.SVC()
.
After reading the answer above, and some other questions and sites (1, 2, 3, 4, 5), I put this together for a gaussian kernel in svm.SVC()
.
用kernel=precomputed
呼叫svm.SVC()
.
然后计算 Gram矩阵又称为内核矩阵(通常缩写为K).
Then compute a Gram Matrix a.k.a. Kernel Matrix (often abbreviated as K).
然后使用此Gram矩阵作为ie X) .html#sklearn.svm.SVC.fit"rel =" noreferrer> svm.SVC().fit()
:
Then use this Gram Matrix as the first argument (i.e. X) to svm.SVC().fit()
:
我从以下代码:
C=0.1
model = svmTrain(X, y, C, "gaussian")
在sklearn.svm.SVC()的
. py"rel =" noreferrer> svmTrain()
,然后是sklearn.svm.SVC().fit()
:
from sklearn import svm
if kernelFunction == "gaussian":
clf = svm.SVC(C = C, kernel="precomputed")
return clf.fit(gaussianKernelGramMatrix(X,X), y)
革兰氏矩阵计算-用作sklearn.svm.SVC().fit()
的参数-在 gaussianKernelGramMatrix()
:
the Gram Matrix computation - used as a parameter to sklearn.svm.SVC().fit()
- is done in gaussianKernelGramMatrix()
:
import numpy as np
def gaussianKernelGramMatrix(X1, X2, K_function=gaussianKernel):
"""(Pre)calculates Gram Matrix K"""
gram_matrix = np.zeros((X1.shape[0], X2.shape[0]))
for i, x1 in enumerate(X1):
for j, x2 in enumerate(X2):
gram_matrix[i, j] = K_function(x1, x2)
return gram_matrix
使用 gaussianKernel()
以获得x1和x2之间的径向基函数内核(基于相似性的度量在以sigma = 0.1 为中心的x1上的高斯分布上:
which uses gaussianKernel()
to get a radial basis function kernel between x1 and x2 (a measure of similarity based on a gaussian distribution centered on x1 with sigma=0.1):
def gaussianKernel(x1, x2, sigma=0.1):
# Ensure that x1 and x2 are column vectors
x1 = x1.flatten()
x2 = x2.flatten()
sim = np.exp(- np.sum( np.power((x1 - x2),2) ) / float( 2*(sigma**2) ) )
return sim
然后,一旦使用此自定义内核训练了模型,我们将使用:
Then, once the model is trained with this custom kernel, we predict with "the [custom] kernel between the test data and the training data":
predictions = model.predict( gaussianKernelGramMatrix(Xval, X) )
简而言之,要使用自定义SVM高斯内核,可以使用以下代码段:
In short, to use a custom SVM gaussian kernel, you can use this snippet:
import numpy as np
from sklearn import svm
def gaussianKernelGramMatrixFull(X1, X2, sigma=0.1):
"""(Pre)calculates Gram Matrix K"""
gram_matrix = np.zeros((X1.shape[0], X2.shape[0]))
for i, x1 in enumerate(X1):
for j, x2 in enumerate(X2):
x1 = x1.flatten()
x2 = x2.flatten()
gram_matrix[i, j] = np.exp(- np.sum( np.power((x1 - x2),2) ) / float( 2*(sigma**2) ) )
return gram_matrix
X=...
y=...
Xval=...
C=0.1
clf = svm.SVC(C = C, kernel="precomputed")
model = clf.fit( gaussianKernelGramMatrixFull(X,X), y )
p = model.predict( gaussianKernelGramMatrixFull(Xval, X) )
这篇关于如何使用自定义SVM内核?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!