本文介绍了在八度中求解非线性方程的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我是Octave的新手,想知道如何求解非线性方程.这是一个示例方程式
I am new to Octave and would like to know how to solve nonlinear equation. Here is an example equation
x^4-16x^3+61x^2-22x-12=0
更新:
w+x+y+1=3
2w+3x+4y+5=10
w-x+y-1=4
谢谢
推荐答案
使用 fzero
以获得最接近给定x0
的解决方案(当然,不一定最接近,但找到的第一个):
Use fzero
to get the solution closest to a given x0
(well, not necessarily closest, but the first one found):
这应该有效:
x0 = 0;
f = @(x) x^4 - 16*x^3 + 61*x^2 - 22*x - 12;
fzero(f,x0);
ans = 0.76393
此外,您还应签出 roots
,以获取多项式的所有解.
Also, you should check out roots
, to get all the solutions of a polynomial.
x = [1 -16 61 -22 -12]; % The coefficients of your polynomial
y = roots(x)
y =
10.29150
5.23607
0.76393
-0.29150
好,所以我还是要回答第二个问题:
Ok, so I'll answer the second question anyway:
x = [1 1 1; 2 3 4; 1 -1 1]; % Coefficients of w, x and y
y = [2; 5; 5]; % [3-1; 10-5; 4+1]
b = x\y
b =
2.2500
-1.5000
1.2500
这篇关于在八度中求解非线性方程的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!