问题描述
我想在两个二维 numpy 数组中获取相交(公共)行.例如,如果以下数组作为输入传递:
I want to get the intersecting (common) rows across two 2D numpy arrays. E.g., if the following arrays are passed as inputs:
array([[1, 4],
[2, 5],
[3, 6]])
array([[1, 4],
[3, 6],
[7, 8]])
输出应该是:
array([[1, 4],
[3, 6])
我知道如何用循环来做到这一点.我正在寻找一种 Pythonic/Numpy 方法来做到这一点.
I know how to do this with loops. I'm looking at a Pythonic/Numpy way to do this.
推荐答案
对于短数组,使用集合可能是最清晰、最易读的方法.
For short arrays, using sets is probably the clearest and most readable way to do it.
另一种方法是使用 numpy.intersect1d
.您必须欺骗它以将行视为单个值,但是...这使事情变得不那么可读...
Another way is to use
numpy.intersect1d
. You'll have to trick it into treating the rows as a single value, though... This makes things a bit less readable...
import numpy as np
A = np.array([[1,4],[2,5],[3,6]])
B = np.array([[1,4],[3,6],[7,8]])
nrows, ncols = A.shape
dtype={'names':['f{}'.format(i) for i in range(ncols)],
'formats':ncols * [A.dtype]}
C = np.intersect1d(A.view(dtype), B.view(dtype))
# This last bit is optional if you're okay with "C" being a structured array...
C = C.view(A.dtype).reshape(-1, ncols)
对于大型数组,这应该比使用集合快得多.
For large arrays, this should be considerably faster than using sets.
这篇关于获取跨两个二维 numpy 数组的相交行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!