问题描述
出于某些原因,我需要为 Tensorflow 实现自定义资源.我试图从查找表的实现中获得灵感.如果我理解的好,我需要实现3个TF操作:
For some reasons, I need to implement a custom resource for Tensorflow. I tried to get inspiration from lookup table implementations. If I understood well, I need to implement 3 TF operations:
- 创建我的资源
- 资源的初始化(例如,在查找表的情况下填充哈希表)
- 执行查找/查找/查询步骤.
为了便于实现,我依赖于 tensorflow/core/framework/resource_op_kernel.h
.我收到以下错误
To facilitate the implementation, I'm relying on tensorflow/core/framework/resource_op_kernel.h
. I get the following error
[F tensorflow/core/lib/core/refcount.h:90] Check failed: ref_.load() == 0 (1 vs. 0)
1] 29701 abort python test.py
这是重现问题的完整代码:
Here is the full code to reproduce the issue:
using namespace tensorflow;
/** CUSTOM RESOURCE **/
class MyVector : public ResourceBase {
public:
string DebugString() override { return "MyVector"; };
private:
std::vector<int> vec_;
};
/** CREATE VECTOR **/
REGISTER_OP("CreateMyVector")
.Attr("container: string = ''")
.Attr("shared_name: string = ''")
.Output("resource: resource")
.SetIsStateful();
class MyVectorOp : public ResourceOpKernel<MyVector> {
public:
explicit MyVectorOp(OpKernelConstruction* ctx) : ResourceOpKernel(ctx) {}
private:
Status CreateResource(MyVector** resource) override {
*resource = CHECK_NOTNULL(new MyVector);
if(*resource == nullptr) {
return errors::ResourceExhausted("Failed to allocate");
}
return Status::OK();
}
Status VerifyResource(MyVector* vec) override {
return Status::OK();
}
};
REGISTER_KERNEL_BUILDER(Name("CreateMyVector").Device(DEVICE_CPU), MyVectorOp)
然后,在编译之后,错误可以用这个 Python 代码片段重现:
and then, after compiling, the error can be reproduced with this Python snippet of code:
test_module = tf.load_op_library('./test.so')
my_vec = test_module.create_my_vector()
with tf.Session() as s:
s.run(my_vec)
作为一个附带问题,我有兴趣获得实施自定义资源的教程/指南.特别是,我想了解有关检查点/图形导出/序列化等需要实现的内容的信息.
As a side question, I'd be interested in having tutorials / guidelines to implement custom resources. In particular, I'd like to have information about what needs to be implemented for checkpoints / graph export / serialization / etc.
非常感谢.
推荐答案
将 -DNDEBUG
添加到您的构建标志.在 TF 问题 17316 中解释了此解决方法.
Add -DNDEBUG
to your build flags.This workaround is explained in TF issue 17316.
这篇关于Tensorflow 中的自定义资源的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!