问题描述
我想用常数 pw
拟合指数函数 y = x ** pw
数据点。 scipy
curve_fit
函数应优化 adj1
和 adj2
。我已经尝试使用以下代码,但无法正常工作。曲线不经过数据点。我该如何解决?
import numpy as np
import matplotlib.pyplot as plt
from scipy .optimize import curve_fit
def func(x,adj1,adj2):
return np.round((((x + adj1)** pw)* adj2,2)
x = [0.5,0.85]#幂pw的指数函数应适合的两个给定数据点
y = [0.02,4]
pw = 15
popt ,pcov = curve_fit(func,x,y)
xf = np.linspace(0,1,50)
plt.figure()
plt。 plot(x,y,'ko',label =原始数据)
plt.plot(xf,func(xf,* popt),'r-',label =拟合曲线)
plt.show()
在这里。我认为对于lmfit,曲线拟合是scipy的一个很好的替代方法。 b import numpy as np
#创建要拟合的数据
xf = [0.5,0.85]#两个幂为pw的指数函数应适合的两个给定数据点
yf = [0.02,4]
#定义目标函数:返回要最小化的数组
def fcn2min(params,x,data):
pw = params ['pw'] .value
adj1 = params ['adj1']。value
adj2 = params ['adj2']。value
model = adj1 * np.power(x + adj2, pw)
返回模型-数据
pw = 2
#创建一组参数
params = Parameters()
params。 add('pw',value = pw,variable = False)
params.add('adj1',value = 1)
params.add('adj2',value = 1)
#合适,此处使用最小二乘模型
结果=最小化(fcn2min,params,args =(xf,yf))
#计算最终结果$ b final = yf +结果。剩余
#写入错误报告
report_fit(result.params)
adj1 = result.params ['adj1']
adj2 = result.params ['adj2' ]
#尝试绘制结果
x = np.linspace(0,1,100)
y = adj1 * np.power(x + adj2,pw)
导入pylab
pylab.plot(xf,yf,'ko')
pylab.plot(x,y,'r')
pylab.show()
I want to fit an exponential function y=x ** pw
with a constant pw
to fit through two datapoints. The scipy
curve_fit
function should optimise adj1
and adj2
. I have tried with the code below but couldn't get it to work. The curve does not go through the datapoints. How can I fix it?
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
def func(x, adj1,adj2):
return np.round(((x+adj1) ** pw) * adj2, 2)
x = [0.5,0.85] # two given datapoints to which the exponential function with power pw should fit
y = [0.02,4]
pw=15
popt, pcov = curve_fit(func, x, y)
xf=np.linspace(0,1,50)
plt.figure()
plt.plot(x, y, 'ko', label="Original Data")
plt.plot(xf, func(xf, *popt), 'r-', label="Fitted Curve")
plt.show()
Here the solution. I think for curve fitting lmfit is a good alternative to scipy.
from lmfit import minimize, Parameters, Parameter, report_fit
import numpy as np
# create data to be fitted
xf = [0.5,0.85] # two given datapoints to which the exponential function with power pw should fit
yf = [0.02,4]
# define objective function: returns the array to be minimized
def fcn2min(params, x, data):
pw = params['pw'].value
adj1 = params['adj1'].value
adj2 = params['adj2'].value
model = adj1 * np.power(x + adj2, pw)
return model - data
pw=2
# create a set of Parameters
params = Parameters()
params.add('pw', value= pw, vary=False)
params.add('adj1', value= 1)
params.add('adj2', value= 1)
# do fit, here with leastsq model
result = minimize(fcn2min, params, args=(xf, yf))
# calculate final result
final = yf + result.residual
# write error report
report_fit(result.params)
adj1=result.params['adj1']
adj2=result.params['adj2']
# try to plot results
x = np.linspace(0, 1, 100)
y = adj1 * np.power(x + adj2, pw)
import pylab
pylab.plot(xf, yf, 'ko')
pylab.plot(x, y, 'r')
pylab.show()
这篇关于使用scipy curve_fit通过两个数据点拟合指数函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!