本文介绍了图 - Dijkstra算法的单源最长路径的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

好吧,我张贴,因为这项工作的这样一个问题:

Ok, I posted this question because of this exercise:

我们能修改Dijkstra算法来解决,通过改变最小到最大的单一来源的最长路径问题?如果是的话,那就证明你的算法是正确的。如果不是,则提供一个反例。

在本练习或与Dijkstra算法所有的事情,我假设有图中没有负权重。否则,它使没有太大意义,因为即使是最短路径问题,Dijkstra算法不能正常工作,如果下降沿存在。

For this exercise or all things related to Dijkstra's algorithm, I assume there are no negative weights in the graph. Otherwise, it makes not much sense, as even for shortest path problem, Dijkstra can't work properly if negative edge exists.

好吧,我的直觉回答了我:

Ok, my intuition answered it for me:

是的,我认为它可以被修改。

Yes, I think it can be modified.

  1. 在初始化距离数组MININT
  2. 变化距离[W]>距离[V] +重量距离[W]<距离[V] +重量

然后我做了一些研究来验证我的答案。我发现这个职位:


Then I did some research to verify my answer. I found this post:

Longest从DAG中某些节点源之间的路径

Longest path between from a source to certain nodes in a DAG

首先,我想我的回答是,因为上面的职位是错误的。但我发现,也许在上述职位的答案是错的。它混合了单源最长路径问题的最长路径问题

First I thought my answer was wrong because of the post above. But I found that maybe the answer in the post above is wrong. It mixed up The Single-Source Longest Path Problem with The Longest Path Problem.

此外,在 Bellman-Ford算法​​的维基,它正确地说,

Also in wiki of Bellman–Ford algorithm, it said correctly :

在Bellman-Ford算法​​计算单源最短路径的加权有向图。 对于图形只有非负边权重,更快Dijkstra算法也解决了这个问题。因此,贝尔曼 - 福特主要用于图形与下降沿的权重。

所以,我想我的答案是正确的,对不对?Dijkstra算法可以真正的单源的最长路径问题,我的修改也是正确的,对吧?

So I think my answer is correct, right?Dijkstra can really be The Single-Source Longest Path Problem and my modifications are also correct, right?

推荐答案

不,我们不能 - 或者至少是没有多项式还原/修改被称为 - 的是 NP难,而Dijkstra算法在多项式时间内运行!

No, we cannot - or at the very least, no polynomial reduction/modification is known - longest path problem is NP-Hard, while dijkstra runs in polynomial time!

如果我们能找到一个modfication到dijsktra回答在多项式时间最长路径问题,我们可以得到 P = NP

If we can find a modfication to dijsktra to answer longest-path problem in polynomial time, we can derive P=NP

如果不是,则提供一个反

这是非常糟糕的任务。计数器例如可以提供一个具体的修改是错误的,而有可能是不同的变形例即行。
事实是,我们不知道最长的路径问题是solveable在多项式时间或没有,但一般的假设是 - 它不是

This is very bad task. The counter example can provide a specific modification is wrong, while there could be a different modification that is OK.
The truth is we do not know if longest-path problem is solveable in polynomial time or not, but the general assumption is - it is not.

有关已只是改变了放松步骤:

regarding just changing the relaxation step:

        A
       / \
      1   2
     /     \
    B<--1---C
edges are (A,B),(A,C),(C,B)

从A Dijkstra算法会先挑B,然后B是永远无法到达 - 因为它是出了一套距离

最起码,你将不得不也改变最小堆变成最大堆,却会产生不同的反例失败的原因。

At the very least, one will have also to change min heap into max heap, but it will have a different counter-example why it fails.

(1)可能是,也许如果P = NP是可能的,但它是非常不可能的。

(1) probably, maybe if P=NP it is possible, but it is very unlikely.

这篇关于图 - Dijkstra算法的单源最长路径的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-20 00:31