问题描述
我有一个Pandas数据框(这只是一小部分)
I have a Pandas dataframe (this is only a little piece)
>>> d1
y norm test y norm train len(y_train) len(y_test) \
0 64.904368 116.151232 1645 549
1 70.852681 112.639876 1645 549
SVR RBF \
0 (35.652207342877873, 22.95533537448393)
1 (39.563683797747622, 27.382483096332511)
LCV \
0 (19.365430594452338, 13.880062435173587)
1 (19.099614489458364, 14.018867136617146)
RIDGE CV \
0 (4.2907610988480362, 12.416745648065584)
1 (4.18864306788194, 12.980833914392477)
RF \
0 (9.9484841581029428, 16.46902345373697)
1 (10.139848213735391, 16.282141345406522)
GB \
0 (0.012816232716538605, 15.950164822266007)
1 (0.012814519804493328, 15.305745202851712)
ET DATA
0 (0.00034337162272515505, 16.284800366214057) j2m
1 (0.00024811554516431878, 15.556506191784194) j2m
>>>
我想拆分所有包含元组的列.例如,我想将列 LCV
替换为列 LCV-a
和 LCV-b
.
I want to split all the columns that contain tuples. For example, I want to replace the column LCV
with the columns LCV-a
and LCV-b
.
我该怎么做?
推荐答案
您可以通过在该列上执行 pd.DataFrame(col.tolist())
来做到这一点:
You can do this by doing pd.DataFrame(col.tolist())
on that column:
In [2]: df = pd.DataFrame({'a':[1,2], 'b':[(1,2), (3,4)]})
In [3]: df
Out[3]:
a b
0 1 (1, 2)
1 2 (3, 4)
In [4]: df['b'].tolist()
Out[4]: [(1, 2), (3, 4)]
In [5]: pd.DataFrame(df['b'].tolist(), index=df.index)
Out[5]:
0 1
0 1 2
1 3 4
In [6]: df[['b1', 'b2']] = pd.DataFrame(df['b'].tolist(), index=df.index)
In [7]: df
Out[7]:
a b b1 b2
0 1 (1, 2) 1 2
1 2 (3, 4) 3 4
注意:在早期版本中,此答案建议使用 df ['b'].apply(pd.Series)
而不是 pd.DataFrame(df ['b'].tolist(),index = df.index)
.这样做也很好(因为它使每个元组组成一个Series,然后将其视为一个数据帧的一行),但是它比 tolist
版本更慢/使用更多的内存,如其他答案(感谢到denfromufa ).
Note: in an earlier version, this answer recommended to use df['b'].apply(pd.Series)
instead of pd.DataFrame(df['b'].tolist(), index=df.index)
. That works as well (because it makes a Series of each tuple, which is then seen as a row of a dataframe), but it is slower / uses more memory than the tolist
version, as noted by the other answers here (thanks to denfromufa).
这篇关于如何在Pandas数据框中拆分一列元组?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!