本文介绍了在 pandas 中填充另一列中某一列的缺失值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我的熊猫数据框中有两列.
I have two columns in my pandas dataframe.
我想用Loan_Status
列(dtype:int64)的值填充Credit_History
列(dtype:int64)的缺失值.
I want to fill the missing values of Credit_History
column (dtype : int64) with values of Loan_Status
column (dtype : int64).
推荐答案
您可以尝试 fillna
或 combine_first
:
You can try fillna
or combine_first
:
df.Credit_History = df.Credit_History.fillna(df.Loan_Status)
或者:
df.Credit_History = df.Credit_History.combine_first(df.Loan_Status)
示例:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Credit_History':[1,2,np.nan, np.nan],
'Loan_Status':[4,5,6,8]})
print (df)
Credit_History Loan_Status
0 1.0 4
1 2.0 5
2 NaN 6
3 NaN 8
df.Credit_History = df.Credit_History.combine_first(df.Loan_Status)
print (df)
Credit_History Loan_Status
0 1.0 4
1 2.0 5
2 6.0 6
3 8.0 8
这篇关于在 pandas 中填充另一列中某一列的缺失值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!