本文介绍了如何在IPython Notebook中加载jar依赖的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

鼓励我试用spark-csv在.Pypark中阅读.csv文件
我发现了一些帖子,如

This page was inspiring me to try out spark-csv for reading .csv file in PysparkI found a couple of posts such as this describing how to use spark-csv

但是我不能通过包含.jar文件或包扩展来初始化ipython实例

But I am not able to initialize the ipython instance by including either the .jar file or package extension in the start-up that could be done through spark-shell.

也就是说,而不是 ipython notebook --profile = pyspark ,我尝试了 ipython notebook --profile = pyspark --packages com.databricks:spark-csv_2.10:1.0.3 但不支持。

That is, instead of ipython notebook --profile=pyspark, I tried out ipython notebook --profile=pyspark --packages com.databricks:spark-csv_2.10:1.0.3 but it is not supported.

请指教。

推荐答案

PYSPARK_SUBMIT_ARGS 变量。例如:

export PACKAGES="com.databricks:spark-csv_2.11:1.3.0"
export PYSPARK_SUBMIT_ARGS="--packages ${PACKAGES} pyspark-shell"

这些属性也可以在你的代码中动态设置 SparkContext / SparkSession 和相应的JVM已经启动:

These property can be also set dynamically in your code before SparkContext / SparkSession and corresponding JVM have been started:

packages = "com.databricks:spark-csv_2.11:1.3.0"

os.environ["PYSPARK_SUBMIT_ARGS"] = (
    "--packages {0} pyspark-shell".format(packages)
)

这篇关于如何在IPython Notebook中加载jar依赖的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-18 15:45