本文介绍了结合两个Coq假设的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

所以我有两个假设,一个是 h:A-> B ,另一个是 h2:A 。如何使 h3:B 出现在我的假设中?

So I have two hypotheses, one that is h : A -> B, and the other which is h2 : A. How can I get h3 : B to appear in my hypotheses?

推荐答案

pose proof (h h2) as h3.

引入 h3:B 作为新的假设,

specialize (h h2).

修改 h:A-> B 转换为 h:B -如果您不需要 h 之后,对称地,

modifies h : A -> B into h : B -- this can be useful if you won't need h later, and symmetrically,

apply h in h2.

h2:A 转换为 h2:B

另一种(不是很方便)的方法是

Another (not very convenient) way would be to

assert B as h3 by exact (h h2).

这就是姿势证明的等效形式

此外,在如下所示的简单情况下,您也可以在不引入新假设的情况下解决目标:

Also, in a simple case like the following, you can solve your goal without introducing a new hypothesis:

Goal forall (A B : Prop), (A -> B) -> A -> B.
  intros A B h h2.
  apply (h h2).
Qed.

这篇关于结合两个Coq假设的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-09 04:27