本文介绍了结合两个Coq假设的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
所以我有两个假设,一个是 h:A-> B
,另一个是 h2:A
。如何使 h3:B
出现在我的假设中?
So I have two hypotheses, one that is h : A -> B
, and the other which is h2 : A
. How can I get h3 : B
to appear in my hypotheses?
推荐答案
pose proof (h h2) as h3.
引入 h3:B
作为新的假设,
specialize (h h2).
修改 h:A-> B
转换为 h:B
-如果您不需要 h
之后,对称地,
modifies h : A -> B
into h : B
-- this can be useful if you won't need h
later, and symmetrically,
apply h in h2.
将 h2:A
转换为 h2:B
。
另一种(不是很方便)的方法是
Another (not very convenient) way would be to
assert B as h3 by exact (h h2).
这就是姿势证明
的等效形式
此外,在如下所示的简单情况下,您也可以在不引入新假设的情况下解决目标:
Also, in a simple case like the following, you can solve your goal without introducing a new hypothesis:
Goal forall (A B : Prop), (A -> B) -> A -> B.
intros A B h h2.
apply (h h2).
Qed.
这篇关于结合两个Coq假设的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!