问题描述
我对以下主题有疑问:
在猫头鹰中,所有基数限制均基于对象属性的功能和逆功能属性.我已经使用QCR对其进行了重塑.
In the owl, all cardinality restrictions are based on functional and inverse functional properties of Object Properties. I have remodeled it using QCRs.
旧型号(示例):
man drinks some beverage;
drinks -> functional, inferse functional
新模型/EDITED/:
man drinks exactly 1 beverage;
beverage drinkedBy exactly 1 man;
drinks -> domain:man, range:beverage
drinkedBy -> domain:beverage, range:man
drinks inverseOf drinkedBy
我将所有一些"替换为恰好1".我认为第一种类型等效于第二种类型,但是推理机FaCT ++在启动15秒后就被冻结了(浪费了3+ GB RAM并冻结了). HermiT并没有冻结,但是他只能推断出子类.
I replaced all "some" with "exactly 1".I think the first type is equivalent to the second model, but reasoner FaCT++ is frozen after 15 sec of his start (3+ GB RAM wasted and frozen). HermiT is not freezing, but he cannot infer anything but subclasses.
谢谢您的回答.
推荐答案
与Denis进行了进一步讨论之后,他向我解释了这个问题.
After additional discussion with Denis, he explained me the problem.
基本上模型是正确的,但是需要实现每个房屋的左右最多有一个邻居.考虑情况:H5左H4左H3左H2左H1和其他H5左H3在原始模型中,这是不可能的,因为(反)函数不允许这样做.(如果H5离开H4,则不可能H5离开H3)在我们的模型中,我们对left_to/right_to没有更多限制.因此考虑的情况是正确的.
Basically model is correct, but its need to implement that each house has max one neighbour on the left/right.Consider situation:H5 left H4 left H3 left H2 left H1 and additional H5 left H3In origin model its not possible because (inverse) functional not allow it.(If H5 left H4, its not possible to H5 left H3)In our model, we have no more restriction on left_to/right_to. So the considering situation is valid.
要解决此问题,我们需要再添加一条语句:House SubClassOf left_to最多1个房屋/或/House SubClassOf right_to最多1个房屋
To solve this problem we need to add one more statement:House SubClassOf left_to max 1 House /or/ House SubClassOf right_to max 1 House
所以结果是:最大1 =功能的QCR但是模型是错误的.
So the result is :QCR with max 1 = functionalbut the model was wrong.
这篇关于QCR与功能特性的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!