本文介绍了评估字符串中的数学表达式的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
stringExp = "2^4"
intVal = int(stringExp) # Expected value: 16
这将返回以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()
with base 10: '2^4'
我知道eval
可以解决此问题,但是难道没有更好,更重要的是更安全的方法来评估存储在字符串中的数学表达式吗?
I know that eval
can work around this, but isn't there a better and - more importantly - safer method to evaluate a mathematical expression that is being stored in a string?
推荐答案
Pyparsing 可用于解析数学表达式.特别是 fourFn.py 显示了如何解析基本算术表达式.下面,我将fourFn重新包装为一个数字解析器类,以便于重用.
Pyparsing can be used to parse mathematical expressions. In particular, fourFn.pyshows how to parse basic arithmetic expressions. Below, I've rewrapped fourFn into a numeric parser class for easier reuse.
from __future__ import division
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional,
ZeroOrMore, Forward, nums, alphas, oneOf)
import math
import operator
__author__ = 'Paul McGuire'
__version__ = '$Revision: 0.0 $'
__date__ = '$Date: 2009-03-20 $'
__source__ = '''http://pyparsing.wikispaces.com/file/view/fourFn.py
http://pyparsing.wikispaces.com/message/view/home/15549426
'''
__note__ = '''
All I've done is rewrap Paul McGuire's fourFn.py as a class, so I can use it
more easily in other places.
'''
class NumericStringParser(object):
'''
Most of this code comes from the fourFn.py pyparsing example
'''
def pushFirst(self, strg, loc, toks):
self.exprStack.append(toks[0])
def pushUMinus(self, strg, loc, toks):
if toks and toks[0] == '-':
self.exprStack.append('unary -')
def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal(".")
e = CaselessLiteral("E")
fnumber = Combine(Word("+-" + nums, nums) +
Optional(point + Optional(Word(nums))) +
Optional(e + Word("+-" + nums, nums)))
ident = Word(alphas, alphas + nums + "_$")
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div
expop = Literal("^")
pi = CaselessLiteral("PI")
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
).setParseAction(self.pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of
# "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-right
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + \
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
term = factor + \
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
expr << term + \
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
# addop_term = ( addop + term ).setParseAction( self.pushFirst )
# general_term = term + ZeroOrMore( addop_term ) | OneOrMore( addop_term)
# expr << general_term
self.bnf = expr
# map operator symbols to corresponding arithmetic operations
epsilon = 1e-12
self.opn = {"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.truediv,
"^": operator.pow}
self.fn = {"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"exp": math.exp,
"abs": abs,
"trunc": lambda a: int(a),
"round": round,
"sgn": lambda a: abs(a) > epsilon and cmp(a, 0) or 0}
def evaluateStack(self, s):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack(s)
if op in "+-*/^":
op2 = self.evaluateStack(s)
op1 = self.evaluateStack(s)
return self.opn[op](op1, op2)
elif op == "PI":
return math.pi # 3.1415926535
elif op == "E":
return math.e # 2.718281828
elif op in self.fn:
return self.fn[op](self.evaluateStack(s))
elif op[0].isalpha():
return 0
else:
return float(op)
def eval(self, num_string, parseAll=True):
self.exprStack = []
results = self.bnf.parseString(num_string, parseAll)
val = self.evaluateStack(self.exprStack[:])
return val
您可以像这样使用它
nsp = NumericStringParser()
result = nsp.eval('2^4')
print(result)
# 16.0
result = nsp.eval('exp(2^4)')
print(result)
# 8886110.520507872
这篇关于评估字符串中的数学表达式的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!