问题描述
我的主要目标是证明卷积定理有效(只是提醒:卷积定理表示idft(dft(im) .* dft(mask)) = conv(im, mask)
).我正在尝试编程.
My main goal is to show that the convolution theorem works (just a reminder: the convolution theorem means that idft(dft(im) .* dft(mask)) = conv(im, mask)
). I'm trying to program that.
这是我的代码:
function displayTransform( im )
% This routine displays the Fourier spectrum of an image.
%
% Input: im - a grayscale image (values in [0,255])
%
% Method: Computes the Fourier transform of im and displays its spectrum,
% (if F(u,v) = a+ib, displays sqrt(a^2+b^2)).
% Uses display techniques for visualization: log, and stretch values to full range,
% cyclic shift DC to center (use fftshift).
% Use showImage to display and fft2 to apply transform.
%displays the image in grayscale in the Frequency domain
imfft = fft2(im);
imagesc(log(abs(fftshift(imfft))+1)), colormap(gray);
% building mask and padding it with Zeros in order to create same size mask
b = 1/16*[1 1 1 1;1 1 1 1; 1 1 1 1; 1 1 1 1];
paddedB = padarray(b, [floor(size(im,1)/2)-2 floor(size(im,2)/2)-2]);
paddedB = fft2(paddedB);
C = imfft.*paddedB;
resIFFT = ifft2(C);
%reguler convolution
resConv = conv2(im,b);
showImage(resConv);
end
我想比较resIFFT
和resConv
.我想我缺少一些强制转换,因为如果使用强制转换来加倍,则矩阵中的数字彼此接近.也许我在浇铸或填充的位置上有一些错误?
I want to compare resIFFT
and resConv
. I think I'm missing some casting because I am getting numbers in the matrix closer one to another if I'm using casting to double.Maybe I have some mistake in the place of the casting or the padding?
推荐答案
-
为了使用DFT计算线性卷积,您需要将两个信号都填充为零,否则结果为.尽管您不必手动填充信号,但
fft2
可以为您完成此操作如果您将其他参数添加到函数调用中,例如:
In order to compute the linear convolution using DFT, you need to post-pad both signals with zeros, otherwise the result would be the circular convolution. You don't have to manually pad a signal though,
fft2
can do it for you if you add additional parameters to the function call, like so:
fft2(X, M, N)
在执行转换之前,它会填充(或截断)信号X
以创建M by N信号.
在每个维度上填充每个信号的长度等于两个信号的长度之和,即:
This pads (or truncates) signal X
to create an M-by-N signal before doing the transform.
Pad each signal in each dimension to a length that equals the sum of the lengths of both signals, that is:
M = size(im, 1) + size(mask, 1);
N = size(im, 2) + size(mask, 2);
只是为了好的做法,而不是:
Just for good practice, instead of:
b = 1 / 16 * [1 1 1 1; 1 1 1 1; 1 1 1 1; 1 1 1 1];
您可以写:
b = ones(4) / 16;
无论如何,这是固定代码(仅出于示例目的,我生成了一个随机图像):
Anyway, here's the fixed code (I've generated a random image just for the sake of the example):
im = fix(255 * rand(500)); % # Generate a random image
mask = ones(4) / 16; % # Mask
% # Circular convolution
resConv = conv2(im, mask);
% # Discrete Fourier transform
M = size(im, 1) + size(mask, 1);
N = size(im, 2) + size(mask, 2);
resIFFT = ifft2(fft2(im, M, N) .* fft2(mask, M, N));
resIFFT = resIFFT(1:end-1, 1:end-1); % # Adjust dimensions
% # Check the difference
max(abs(resConv(:) - resIFFT(:)))
应该得到的结果应该为零:
The result you should get is supposed to be zero:
ans =
8.5265e-014
足够近了.
这篇关于验证卷积定理的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!