问题描述
我正在尝试将一列 deltaT 添加到数据框中,其中 deltaT 是连续行之间的时间差(如时间序列中的索引).
I am trying to add a column of deltaT to a dataframe where deltaT is the time difference between the successive rows (as indexed in the timeseries).
time value
2012-03-16 23:50:00 1
2012-03-16 23:56:00 2
2012-03-17 00:08:00 3
2012-03-17 00:10:00 4
2012-03-17 00:12:00 5
2012-03-17 00:20:00 6
2012-03-20 00:43:00 7
所需的结果类似于以下内容(以分钟为单位显示 deltaT 单位):
Desired result is something like the following (deltaT units shown in minutes):
time value deltaT
2012-03-16 23:50:00 1 0
2012-03-16 23:56:00 2 6
2012-03-17 00:08:00 3 12
2012-03-17 00:10:00 4 2
2012-03-17 00:12:00 5 2
2012-03-17 00:20:00 6 8
2012-03-20 00:43:00 7 23
推荐答案
注意这里使用的是 numpy >= 1.7,对于 numpy http://pandas.pydata.org/pandas-docs/dev/timeseries.html#time-deltas
Note this is using numpy >= 1.7, for numpy < 1.7, see the conversion here: http://pandas.pydata.org/pandas-docs/dev/timeseries.html#time-deltas
带有日期时间索引的原始框架
Your original frame, with a datetime index
In [196]: df
Out[196]:
value
2012-03-16 23:50:00 1
2012-03-16 23:56:00 2
2012-03-17 00:08:00 3
2012-03-17 00:10:00 4
2012-03-17 00:12:00 5
2012-03-17 00:20:00 6
2012-03-20 00:43:00 7
In [199]: df.index
Out[199]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-16 23:50:00, ..., 2012-03-20 00:43:00]
Length: 7, Freq: None, Timezone: None
这是你想要的timedelta64
Here is the timedelta64 of what you want
In [200]: df['tvalue'] = df.index
In [201]: df['delta'] = (df['tvalue']-df['tvalue'].shift()).fillna(0)
In [202]: df
Out[202]:
value tvalue delta
2012-03-16 23:50:00 1 2012-03-16 23:50:00 00:00:00
2012-03-16 23:56:00 2 2012-03-16 23:56:00 00:06:00
2012-03-17 00:08:00 3 2012-03-17 00:08:00 00:12:00
2012-03-17 00:10:00 4 2012-03-17 00:10:00 00:02:00
2012-03-17 00:12:00 5 2012-03-17 00:12:00 00:02:00
2012-03-17 00:20:00 6 2012-03-17 00:20:00 00:08:00
2012-03-20 00:43:00 7 2012-03-20 00:43:00 3 days, 00:23:00
不考虑天差(你的最后一天是3/20,前一天是3/17)的情况下得出答案,实际上很棘手
Getting out the answer while disregarding the day difference (your last day is 3/20, prior is 3/17), actually is tricky
In [204]: df['ans'] = df['delta'].apply(lambda x: x / np.timedelta64(1,'m')).astype('int64') % (24*60)
In [205]: df
Out[205]:
value tvalue delta ans
2012-03-16 23:50:00 1 2012-03-16 23:50:00 00:00:00 0
2012-03-16 23:56:00 2 2012-03-16 23:56:00 00:06:00 6
2012-03-17 00:08:00 3 2012-03-17 00:08:00 00:12:00 12
2012-03-17 00:10:00 4 2012-03-17 00:10:00 00:02:00 2
2012-03-17 00:12:00 5 2012-03-17 00:12:00 00:02:00 2
2012-03-17 00:20:00 6 2012-03-17 00:20:00 00:08:00 8
2012-03-20 00:43:00 7 2012-03-20 00:43:00 3 days, 00:23:00 23
这篇关于计算 Pandas Dataframe 索引之间的时间差的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!