问题描述
我在管道函数调用中使用 dplyr
和 group_by
有问题。
I am having problems using dplyr
and group_by
within a piped function call.
可重复的示例
使用以下数据:
ex_data<- structure(list(word1 = c("no", "not", "not", "no", "not", "not",
"not", "not", "no", "not", "no", "not", "not", "not", "no", "not",
"no", "no", "not", "not", "not", "no", "not", "without", "never",
"no", "not", "no", "no", "not", "not", "not", "no", "no", "no",
"not", "not", "without", "never", "no", "not", "not", "not",
"not", "not", "never", "no", "no", "not", "not"), word2 = c("doubt",
"like", "help", "no", "want", "wish", "allow", "care", "harm",
"sorry", "great", "leave", "pretend", "worth", "pleasure", "love",
"danger", "want", "afraid", "doubt", "fail", "good", "forget",
"feeling", "forget", "matter", "avoid", "chance", "hope", "forgotten",
"miss", "perfectly", "bad", "better", "opportunity", "admit",
"fair", "delay", "failed", "wish", "dislike", "distress", "refuse",
"regret", "trust", "want", "evil", "greater", "better", "blame"
), score = c(-1L, 2L, 2L, -1L, 1L, 1L, 1L, 2L, -2L, -1L, 3L,
-1L, -1L, 2L, 3L, 3L, -2L, 1L, -2L, -1L, -2L, 3L, -1L, 1L, -1L,
1L, -1L, 2L, 2L, -1L, -2L, 3L, -3L, 2L, 2L, -1L, 2L, -1L, -2L,
1L, -2L, -2L, -2L, -2L, 1L, 1L, -3L, 3L, 2L, -2L), n = c(102L,
99L, 82L, 60L, 45L, 39L, 36L, 23L, 22L, 21L, 19L, 18L, 18L, 17L,
16L, 16L, 15L, 15L, 15L, 14L, 14L, 13L, 13L, 13L, 12L, 12L, 12L,
11L, 11L, 10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 7L, 7L, 7L, 7L, 7L), contribution = c(-102L,
198L, 164L, -60L, 45L, 39L, 36L, 46L, -44L, -21L, 57L, -18L,
-18L, 34L, 48L, 48L, -30L, 15L, -30L, -14L, -28L, 39L, -13L,
13L, -12L, 12L, -12L, 22L, 22L, -10L, -20L, 30L, -27L, 18L, 18L,
-9L, 18L, -9L, -16L, 8L, -16L, -16L, -16L, -16L, 8L, 7L, -21L,
21L, 14L, -14L)), .Names = c("word1", "word2", "score", "n",
"contribution"), row.names = c(NA, -50L), class = c("tbl_df",
"tbl", "data.frame"))
常规的典型管道操作按预期工作:
outside_result<- ex_data %>%
mutate(word2=reorder(word2,contribution)) %>%
group_by(word1) %>%
top_n(10,abs(contribution)) %>%
group_by(word1,word2) %>%
arrange(desc(contribution)) %>%
ungroup() %>%
mutate(word2 = factor(paste(word2,word1, sep = "__"),
levels=rev(paste(word2,word1,sep="__"))))
我已经实现了以下功能,如下所示:
order_bars <- function(df,facetPanel,barCategory,value){
df %>% mutate(barCategory=reorder(barCategory,value)) %>%
group_by(facetPanel) %>%
top_n(10,abs(value)) %>%
group_by(facetPanel,barCategory) %>%
arrange(desc(value)) %>%
ungroup() %>%
mutate(barCategory = factor(paste(barCategory,facetPanel, sep = "__"),
levels=rev(paste(barCategory,facetPanel,sep="__"))))
}
,使用 $ $ c在函数中的变异操作期间引用data.frame的变量时,$ c>符号。
inside_result<-order_bars(ex_data,ex_data$word1,ex_data$word2,ex_data$contribution)
R抛出以下错误:
Error: unknown variable to group by : facetPanel
Called from: resolve_vars(new_groups, tbl_vars(.data))
我怀疑 group_by
需要进行调整才能采取命名变量,或者我必须使用 .dot
符号来引用列,尽管我只是把它扔在风中...
I suspect group_by
needs to be tweaked to take either named variables, or I have to use .dot
notation to reference columns, although I'm just throwing this out into the wind...
推荐答案
您将需要学习如何使用1)SE版本的 dplyr
动词,如 group_by _
和 mutate _
和2)神秘的 lazyeval :: interp
。请仔细阅读 vignette(nse)
。
You'll need to learn how to use 1) the SE versions of dplyr
verbs such as group_by_
and mutate_
and 2) the enigmatic lazyeval::interp
. Please read vignette("nse")
carefully.
然后我们可以来:
order_bars <- function(df, facetPanel, barCategory, value){
require(lazyeval)
df %>%
mutate_(barCategory = interp(~reorder(x, y), x = as.name(barCategory),
y = as.name(value))) %>%
group_by_(facetPanel) %>%
filter_(interp(~min_rank(desc(abs(x))) <= 10, x = as.name(value))) %>%
group_by_(facetPanel, barCategory) %>%
arrange_(interp(~desc(x), x = as.name(value))) %>%
ungroup() %>%
mutate_(barCategory = interp(
~factor(paste(x, y, sep = "__"), levels = rev(paste(x, y, sep = "__"))),
x = as.name(barCategory), y = as.name(facetPanel)))
}
order_bars(ex_data, 'word1', 'word2', 'contribution')
# A tibble: 25 × 6
word1 word2 score n contribution barCategory
<chr> <chr> <int> <int> <int> <fctr>
1 not like 2 99 198 like__not
2 not help 2 82 164 help__not
3 no great 3 19 57 great__no
4 no pleasure 3 16 48 pleasure__no
5 not love 3 16 48 love__not
6 not care 2 23 46 care__not
7 not want 1 45 45 want__not
8 not wish 1 39 39 wish__not
9 no good 3 13 39 good__no
10 not allow 1 36 36 allow__not
请注意,需要用 filter _
语句替换 top_n
,因为没有 top_n _
存在。看看 top_n
的来源显而易见,应该如何构建 filter _
语句。
Note that we need to replace top_n
with a filter_
statement, since no top_n_
exists. Looking at the source of top_n
makes it obvious how the filter_
statement should be constructed.
或者如果你想得到喜好,你可以写一个NSE版本的 order_bars
:
Or if you want to get fancy, you can write a NSE version of order_bars
:
order_bars <- function(df,facetPanel,barCategory,value){
facetPanel <- substitute(facetPanel)
barCategory <- substitute(barCategory)
value <- substitute(value)
require(lazyeval)
df %>%
mutate_(barCategory = interp(~reorder(x, y), x = barCategory, y = value)) %>%
group_by_(facetPanel) %>%
filter_(interp(~min_rank(desc(abs(x))) <= 10, x = value)) %>%
group_by_(facetPanel, barCategory) %>%
arrange_(interp(~desc(x), x = value)) %>%
ungroup() %>%
mutate_(barCategory = interp(
~factor(paste(x, y, sep = "__"), levels = rev(paste(x, y, sep = "__"))),
x = barCategory, y = facetPanel))
}
order_bars(ex_data, word1, word2, contribution)
理想情况下,您只会完全编写SE版本,并将NSE版本链接到SE版本,并使用 lazyeval
。我会把它作为练习留给读者。
Ideally, you would write only the SE version fully, and link the NSE version to the SE version with lazyeval
. I'll leave that as an exercise to the reader.
这篇关于group_by dplyr在函数NSE中的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!