问题描述
我有一个大的数据集,在R中扼制 split()
。我可以使用 dplyr
group_by这是一个首选方式),但是我不能将所得到的 grouping_df
作为数据帧列表,这是我的连续处理步骤所需的格式(我需要强制
考虑一个样本数据集:
(c(a,a,b,b,c),c(1,2) ,3,4,5),c(2,3,4,2,2)))
listDf = split(df,df $ V1)
返回
$ a
V1 V2 V3
1 a 1 2
2 a 2 3
$ b V1 V2 V3
3 b 3 4
4 b 4 2
$ c
V1 V2 V3
5 c 5 2
我想用 group_by
(类似 group_by(df,V1)
)的模拟效果,但这会返回一个, grouping_df
。我知道 do
应该可以帮助我,但我不确定使用情况(另见)
请注意,按照用于建立此组的因子的名称对每个列表进行分配 - 这是一个所需的功能(最终,用于提取这些名称的方式的奖金kudos从dfs列表中)。
要贴到dplyr,您还可以使用 plyr
而不是 split
:
plyr)
dlply(df,V1,身份)
#$ a
#V1 V2 V3
#1 a 1 2
#2 a 2 3
#
$ b#V1 V2 V3
#1 b 3 4
#2 b 4 2
#$ c
#V1 V2 V3
#1 c 5 2
I have a large dataset that chokes split()
in R. I am able to use dplyr
group_by (which is a preferred way anyway) but I am unable to persist the resulting grouped_df
as a list of data frames, a format required by my consecutive processing steps (I need to coerce to SpatialDataFrames
and similar).
consider a sample dataset:
df = as.data.frame(cbind(c("a","a","b","b","c"),c(1,2,3,4,5), c(2,3,4,2,2)))
listDf = split(df,df$V1)
returns
$a
V1 V2 V3
1 a 1 2
2 a 2 3
$b
V1 V2 V3
3 b 3 4
4 b 4 2
$c
V1 V2 V3
5 c 5 2
I would like to emulate this with group_by
(something like group_by(df,V1)
) but this returns one, grouped_df
. I know that do
should be able to help me, but I am unsure about usage (also see link for a discussion.)
Note that split names each list by the name of the factor that has been used to establish this group - this is a desired function (ultimately, bonus kudos for a way to extract these names from the list of dfs).
To 'stick' to dplyr, you can also use plyr
instead of split
:
library(plyr)
dlply(df, "V1", identity)
#$a
# V1 V2 V3
#1 a 1 2
#2 a 2 3
#$b
# V1 V2 V3
#1 b 3 4
#2 b 4 2
#$c
# V1 V2 V3
#1 c 5 2
这篇关于使用dplyr模拟split()group_by:返回数据帧列表的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!