问题描述
我想获取与行匹配的二维Numpy数组的索引.例如,我的数组是这样的:
I would like to get the index of a 2 dimensional Numpy array that matches a row. For example, my array is this:
vals = np.array([[0, 0],
[1, 0],
[2, 0],
[0, 1],
[1, 1],
[2, 1],
[0, 2],
[1, 2],
[2, 2],
[0, 3],
[1, 3],
[2, 3],
[0, 0],
[1, 0],
[2, 0],
[0, 1],
[1, 1],
[2, 1],
[0, 2],
[1, 2],
[2, 2],
[0, 3],
[1, 3],
[2, 3]])
我想获取与行[0,1]相匹配的索引,即索引3和15.当我执行numpy.where(vals == [0 ,1])
之类的操作时,我得到...
I would like to get the index that matches the row [0, 1] which is index 3 and 15. When I do something like numpy.where(vals == [0 ,1])
I get...
(array([ 0, 3, 3, 4, 5, 6, 9, 12, 15, 15, 16, 17, 18, 21]), array([0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0]))
我想要索引数组([3,15]).
I want index array([3, 15]).
推荐答案
您需要 np.where
函数以获取索引:
You need the np.where
function to get the indexes:
>>> np.where((vals == (0, 1)).all(axis=1))
(array([ 3, 15]),)
或者,如文档所述:
您可以直接致电 .nonzero()
在.all
返回的数组上:
You could directly call .nonzero()
on the array returned by .all
:
>>> (vals == (0, 1)).all(axis=1).nonzero()
(array([ 3, 15]),)
要分解该内容:
>>> vals == (0, 1)
array([[ True, False],
[False, False],
...
[ True, False],
[False, False],
[False, False]], dtype=bool)
并在该数组上调用.all
方法(使用axis=1
),将为您提供True
,其中两个均为True:
and calling the .all
method on that array (with axis=1
) gives you True
where both are True:
>>> (vals == (0, 1)).all(axis=1)
array([False, False, False, True, False, False, False, False, False,
False, False, False, False, False, False, True, False, False,
False, False, False, False, False, False], dtype=bool)
并获取True
的索引:
>>> np.where((vals == (0, 1)).all(axis=1))
(array([ 3, 15]),)
或
>>> (vals == (0, 1)).all(axis=1).nonzero()
(array([ 3, 15]),)
我发现我的解决方案更具可读性,但是正如unutbu指出的那样,以下方法可能更快,并且返回与(vals == (0, 1)).all(axis=1)
相同的值:
I find my solution a bit more readable, but as unutbu points out, the following may be faster, and returns the same value as (vals == (0, 1)).all(axis=1)
:
>>> (vals[:, 0] == 0) & (vals[:, 1] == 1)
这篇关于在二维numpy数组中查找匹配的行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!