问题描述
我在 Pandas 中有一个大数据框,除了用作索引的列之外,它应该只有数值:
I have a large dataframe in pandas that apart from the column used as index is supposed to have only numeric values:
df = pd.DataFrame({'a': [1, 2, 3, 'bad', 5],
'b': [0.1, 0.2, 0.3, 0.4, 0.5],
'item': ['a', 'b', 'c', 'd', 'e']})
df = df.set_index('item')
如何找到数据帧 df
中包含非数字值的行?
How can I find the row of the dataframe df
that has a non-numeric value in it?
在此示例中,它是数据帧中的第四行,在 a
列中有字符串 'bad'
.如何以编程方式找到这一行?
In this example it's the fourth row in the dataframe, which has the string 'bad'
in the a
column. How can this row be found programmatically?
推荐答案
你可以使用 np.isreal
检查每个元素的类型 (applymap 将函数应用于 DataFrame 中的每个元素):
You could use np.isreal
to check the type of each element (applymap applies a function to each element in the DataFrame):
In [11]: df.applymap(np.isreal)
Out[11]:
a b
item
a True True
b True True
c True True
d False True
e True True
如果行中的所有内容都为 True,则它们都是数字:
If all in the row are True then they are all numeric:
In [12]: df.applymap(np.isreal).all(1)
Out[12]:
item
a True
b True
c True
d False
e True
dtype: bool
所以要获取rouges的subDataFrame,(注意:上面的否定,~,找到至少有一个rogue non-numeric的那些):
So to get the subDataFrame of rouges, (Note: the negation, ~, of the above finds the ones which have at least one rogue non-numeric):
In [13]: df[~df.applymap(np.isreal).all(1)]
Out[13]:
a b
item
d bad 0.4
您还可以使用:
You could also find the location of the first offender you could use argmin:
In [14]: np.argmin(df.applymap(np.isreal).all(1))
Out[14]: 'd'
正如 @CTZhu 指出的那样,检查它是否是 int 或 float 的实例(np.isreal 有一些额外的开销):>
As @CTZhu points out, it may be slightly faster to check whether it's an instance of either int or float (there is some additional overhead with np.isreal):
df.applymap(lambda x: isinstance(x, (int, float)))
这篇关于在 pandas 的数据框中查找非数字行?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!