问题描述
DT <- data.table(num=c("20031111","1112003","23423","2222004"),y=c("2003","2003","2003","2004"))
> DT
num y
1: 20031111 2003
2: 1112003 2003
3: 23423 2003
4: 2222004 2004
我想比较两个单元格的内容,并根据布尔值执行一个动作.例如,如果num"与年份匹配,则创建一个包含该值的列 x.我考虑过基于 grep 的子集,这很有效,但自然每次都检查 whole 列,这似乎很浪费
I want to compare the two cell content, and perform an action based on the boolean value. for instance, if "num" matches the year, create a column x holding that value. I thought about subsetting based on grep, and that works, but naturally checks the whole column every time which seems wasteful
DT[grep(y,num)] # works with a pattern>1 warning
我可以 apply() 我的方式,但也许有 data.table 方式?
I could apply() my way but perhaps there's a data.table way?
谢谢
推荐答案
如果您对使用 stringi
包感到满意,这是一种利用 stringi
函数向量化模式和字符串:
If you're happy using the stringi
package, this is a way that takes advantage of the fact that the stringi
functions vectorise both pattern and string:
DT[stri_detect_fixed(num, y), x := num])
根据数据,它可能比 Veerenda Gadekar 发布的方法更快.
Depending on the data, it may be faster than the method posted by Veerenda Gadekar.
DT <- data.table(num=paste0(sample(1000), sample(2001:2010, 1000, TRUE)),
y=as.character(sample(2001:2010, 1000, TRUE)))
microbenchmark(
vg = DT[, x := grep(y, num, value=TRUE, fixed=TRUE), by = .(num, y)],
nk = DT[stri_detect_fixed(num, y), x := num]
)
#Unit: microseconds
# expr min lq mean median uq max neval
# vg 6027.674 6176.397 6513.860 6278.689 6370.789 9590.398 100
# nk 975.260 1007.591 1116.594 1047.334 1110.734 3833.051 100
这篇关于使用 grep 对 data.table 中的行进行子集化,比较行内容的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!