问题描述
给出一个数组:
arr = np.array([[1, 3, 7], [4, 9, 8]]); arr
array([[1, 3, 7],
[4, 9, 8]])
并给出其索引:
np.indices(arr.shape)
array([[[0, 0, 0],
[1, 1, 1]],
[[0, 1, 2],
[0, 1, 2]]])
我如何能够将它们整齐地堆叠在一起以形成新的2D阵列?这就是我想要的:
How would I be able to stack them neatly one against the other to form a new 2D array? This is what I'd like:
array([[0, 0, 1],
[0, 1, 3],
[0, 2, 7],
[1, 0, 4],
[1, 1, 9],
[1, 2, 8]])
这是我当前的解决方案:
This is my current solution:
def foo(arr):
return np.hstack((np.indices(arr.shape).reshape(2, arr.size).T, arr.reshape(-1, 1)))
它可以工作,但是执行此操作是否更短/更美观?
It works, but is there something shorter/more elegant to carry this operation out?
推荐答案
在随后的步骤中使用array-initialization
然后使用broadcasted-assignment
分配索引和数组值-
Using array-initialization
and then broadcasted-assignment
for assigning indices and the array values in subsequent steps -
def indices_merged_arr(arr):
m,n = arr.shape
I,J = np.ogrid[:m,:n]
out = np.empty((m,n,3), dtype=arr.dtype)
out[...,0] = I
out[...,1] = J
out[...,2] = arr
out.shape = (-1,3)
return out
请注意,我们避免使用np.indices(arr.shape)
,这可能会减慢速度.
Note that we are avoiding the use of np.indices(arr.shape)
, which could have slowed things down.
样品运行-
In [10]: arr = np.array([[1, 3, 7], [4, 9, 8]])
In [11]: indices_merged_arr(arr)
Out[11]:
array([[0, 0, 1],
[0, 1, 3],
[0, 2, 7],
[1, 0, 4],
[1, 1, 9],
[1, 2, 8]])
性能
arr = np.random.randn(100000, 2)
%timeit df = pd.DataFrame(np.hstack((np.indices(arr.shape).reshape(2, arr.size).T,\
arr.reshape(-1, 1))), columns=['x', 'y', 'value'])
100 loops, best of 3: 4.97 ms per loop
%timeit pd.DataFrame(indices_merged_arr_divakar(arr), columns=['x', 'y', 'value'])
100 loops, best of 3: 3.82 ms per loop
%timeit pd.DataFrame(indices_merged_arr_eric(arr), columns=['x', 'y', 'value'], dtype=np.float32)
100 loops, best of 3: 5.59 ms per loop
注意:时间包括转换为pandas
数据帧,这是该解决方案的最终用例.
Note: Timings include conversion to pandas
dataframe, that is the eventual use case for this solution.
这篇关于使用NumPy从另一个数组及其索引创建2D数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!