本文介绍了绘制时间序列作为热图的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 29岁程序员,3月因学历无情被辞! 我有一个带有时间戳和值的数据框(大约每5分钟一个值)。 现在我想要绘制x轴上的日子,y轴上的日子以及颜色的值。最好的情况是,如果我可以控制y轴上的分档(5分钟,10分钟,15分钟......每个分档的平均值)。 我是试用ggplot2,但我无法得到合理的结果。 p_heat< - ggplot(data = data, aes(x = days(timestamp),y = minutes(timestamp)+ hours(timestamp)* 60,fill = value))+ geom_tile() c> data< - data.frame(timestamp = seq(from = as.POSIXct(2013-09-01 00:00:00), to = as.POSIXct(2013-10-01 value = runif(8641,0,1)) 这是迄今为止我可以获得的最好效果:) 我也尝试过使用scale_x / y_date() 我会很高兴看到一些将我推向正确方向的暗示。感谢!解决方案这是你想要的东西吗? library(ggplot2) #为x轴创建日期变量 df $ date< - as.Date(df $ timestamp, (格式=%Y-%m-%d) #get H:M分量 df $ hm #创建y轴中断和标签 lab gg geom_tile()+ scale_y_discrete(breaks = lab) gg I have a data frame with timestamps and values (a month with values approximately every 5min).Now I want to have plot with the day on the x-axis, the time of day on the y-axis and the value as the color. Best would be if I can control the binning on the y-axis (5min, 10min, 15min.. with the value as the mean for each bin).I am experimenting with ggplot2, but I can't get a reasonable result.p_heat <- ggplot(data = data, aes(x = days(timestamp), y = minutes(timestamp) + hours(timestamp) * 60, fill = value)) + geom_tile()Test data can be generated as follows:data <- data.frame(timestamp = seq(from = as.POSIXct("2013-09-01 00:00:00"), to = as.POSIXct("2013-10-01 00:00:00"), by = "5 mins"), value = runif(8641, 0, 1))This was the best I could get so far :)I also tried playing with scale_x/y_date()I would be glad about some hints which push me into the right direction. Thanks! 解决方案 Is it something like this you are looking for?library(ggplot2)# create date variable for the x-axisdf$date <- as.Date(df$timestamp, format = "%Y-%m-%d")# get H:M componentsdf$hm <- format(df$timestamp, "%H:%M")# create y-axis breaks and labelslab <- with(df, paste(format(df$timestamp, "%H"), "00", sep = ":"))gg <- ggplot(data = df, aes(x = date, y = hm, fill = value)) + geom_tile() + scale_y_discrete(breaks = lab)gg 这篇关于绘制时间序列作为热图的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 08-20 10:01