本文介绍了Stream-Static Join:如何定期刷新(非持久化/持久化)静态数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在构建一个 Spark Structured Streaming 应用程序,我正在其中执行批处理流连接.并且批处理数据的来源会定期更新.

I am building a Spark Structured Streaming application where I am doing a batch-stream join. And the source for the batch data gets updated periodically.

因此,我计划定期对该批数据进行持久化/非持久化.

So, I am planning to do a persist/unpersist of that batch data periodically.

以下是我用来持久化和取消持久化批处理数据的示例代码.

Below is a sample code which I am using to persist and unpersist the batch data.

流程:

  • 读取批处理数据
  • 保留批处理数据
  • 每隔一小时,取消持久化数据并读取批处理数据并再次持久化.

但是,我没有看到批处理数据每小时刷新一次.

But, I am not seeing the batch data getting refreshed for every hour.

代码:

var batchDF = handler.readBatchDF(sparkSession)
batchDF.persist(StorageLevel.MEMORY_AND_DISK)
var refreshedTime: Instant = Instant.now()

if (Duration.between(refreshedTime, Instant.now()).getSeconds > refreshTime) {
  refreshedTime = Instant.now()
  batchDF.unpersist(false)
  batchDF =  handler.readBatchDF(sparkSession)
    .persist(StorageLevel.MEMORY_AND_DISK)
}

有没有更好的方法可以在 Spark 结构化流媒体作业中实现这种场景?

Is there any better way to achieve this scenario in spark structured streaming jobs ?

推荐答案

您可以利用 Structured Streaming 提供的流式调度功能来做到这一点.

You could do this by making use of the streaming scheduling capabilities that Structured Streaming provides.

您可以通过创建人工速率"来触发静态数据帧的刷新(非持久化 -> 加载 -> 持久化).定期刷新静态数据帧的流.这个想法是:

You can trigger the refreshing (unpersist -> load -> persist) of a static Dataframe by creating an artificial "Rate" stream that refreshes the static Dataframe periodically. The idea is to:

  1. 最初加载静态数据帧并保持为 var
  2. 定义一个刷新静态数据框的方法
  3. 使用费率"以所需时间间隔(例如 1 小时)触发的流
  4. 读取实际流数据并使用静态数据帧执行连接操作
  5. 在该速率流中有一个 foreachBatch 接收器,它调用在步骤 2 中创建的刷新方法.
  1. Load the static Dataframe initially and keep as var
  2. Define a method that refreshes the static Dataframe
  3. Use a "Rate" Stream that gets triggered at the required interval (e.g. 1 hour)
  4. Read actual streaming data and perform join operation with static Dataframe
  5. Within that Rate Stream have a foreachBatch sink that calls refresher method created in step 2.

以下代码在 Spark 3.0.1、Scala 2.12.10 和 Delta 0.7.0 上运行良好.

The following code runs fine with Spark 3.0.1, Scala 2.12.10 and Delta 0.7.0.

  // 1. Load the staticDataframe initially and keep as `var`
  var staticDf = spark.read.format("delta").load(deltaPath)
  staticDf.persist()

  //  2. Define a method that refreshes the static Dataframe
  def foreachBatchMethod[T](batchDf: Dataset[T], batchId: Long) = {
    staticDf.unpersist()
    staticDf = spark.read.format("delta").load(deltaPath)
    staticDf.persist()
    println(s"${Calendar.getInstance().getTime}: Refreshing static Dataframe from DeltaLake")
  }

  // 3. Use a "Rate" Stream that gets triggered at the required interval (e.g. 1 hour)
  val staticRefreshStream = spark.readStream
    .format("rate")
    .option("rowsPerSecond", 1)
    .option("numPartitions", 1)
    .load()
    .selectExpr("CAST(value as LONG) as trigger")
    .as[Long]

  // 4. Read actual streaming data and perform join operation with static Dataframe
  // As an example I used Kafka as a streaming source
  val streamingDf = spark.readStream
    .format("kafka")
    .option("kafka.bootstrap.servers", "localhost:9092")
    .option("subscribe", "test")
    .option("startingOffsets", "earliest")
    .option("failOnDataLoss", "false")
    .load()
    .selectExpr("CAST(value AS STRING) as id", "offset as streamingField")

  val joinDf = streamingDf.join(staticDf, "id")

  val query = joinDf.writeStream
    .format("console")
    .option("truncate", false)
    .option("checkpointLocation", "/path/to/sparkCheckpoint")
    .start()

  // 5. Within that Rate Stream have a `foreachBatch` sink that calls refresher method
  staticRefreshStream.writeStream
    .outputMode("append")
    .foreachBatch(foreachBatchMethod[Long] _)
    .queryName("RefreshStream")
    .trigger(Trigger.ProcessingTime("5 seconds")) // or e.g. 1 hour
    .start()

有一个完整的例子,增量表被创建并更新为新值,如下所示:

To have a full example, the delta table got created and updated with new values as below:

  val deltaPath = "file:///tmp/delta/table"

  import spark.implicits._
  val df = Seq(
    (1L, "static1"),
    (2L, "static2")
  ).toDF("id", "deltaField")

  df.write
    .mode(SaveMode.Overwrite)
    .format("delta")
    .save(deltaPath)

这篇关于Stream-Static Join:如何定期刷新(非持久化/持久化)静态数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-14 15:35