如何在scala中比较两个数据帧

如何在scala中比较两个数据帧

本文介绍了如何在scala中比较两个数据帧的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有两个完全相同的数据框用于比较测试

I have two exactly same dataframes for comparison test

     df1
     ------------------------------------------
     year | state | count2 | count3 | count4|
     2014 | NJ    | 12332  | 54322  | 53422 |
     2014 | NJ    | 12332  | 53255  | 55324 |
     2015 | CO    | 12332  | 53255  | 55324 |
     2015 | MD    | 14463  | 76543  | 66433 |
     2016 | CT    | 14463  | 76543  | 66433 |
     2016 | CT    | 55325  | 76543  | 66433 |
     ------------------------------------------
     df2
     ------------------------------------------
     year | state | count2 | count3 | count4|
     2014 | NJ    | 12332  | 54322  | 53422 |
     2014 | NJ    | 65333  | 65555  | 125   |
     2015 | CO    | 12332  | 53255  | 55324 |
     2015 | MD    | 533    | 75     | 64524 |
     2016 | CT    | 14463  | 76543  | 66433 |
     2016 | CT    | 55325  | 76543  | 66433 |
     ------------------------------------------

我想与count2到count4上的这两个df进行比较,如果计数不匹配,则打印出一些消息说它不匹配.这是我的尝试

I want to compare with these two dfs on count2 to count4, if the counts doesn't match then print out some message saying it is mismatching.here is my try

     val cols = df1.columns.filter(_ != "year").toList
     def mapDiffs(name: String) = when($"l.$name" === $"r.$name", null).otherwise(array($"l.$name", $"r.$name")).as(name)
     val result = df1.as("l").join(df2.as("r"), "year").select($"year" :: cols.map(mapDiffs): _*)

然后将其与具有相同数字的相同状态进行比较,它没有执行我想做的事

it then compares with the same state with the same number, it didn't do what I wanted to do

     ------------------------------------------
     year | state | count2 | count3 | count4|
     2014 | NJ    | 12332  | 54322  | 53422 |
     2014 | NJ    | no     | no     | no    |
     2015 | CO    | 12332  | 53255  | 55324 |
     2015 | MD    | no     | no     | 64524 |
     2016 | CT    | 14463  | 76543  | 66433 |
     2016 | CT    | 55325  | 76543  | 66433 |
     ------------------------------------------

我希望结果如上所示,如何实现?

I want the result to come out as above, how do I achieve that?

编辑,如果我只想在一个df中进行比较,那么在另一种情况下,col与cols我该怎么做?喜欢

edits, also in a different scenario if I want to compare only in one df, col to cols how do I do that?like

 ------------------------------------------
 year | state | count2 | count3 | count4|
 2014 | NJ    | 12332  | 54322  | 53422 |

我想比较count3和count 4列与count2,显然cou​​nt3和count 4与count 2不匹配,所以我希望结果是

I want to compare count3 and count 4 cols to count2, obviously count3 and count 4 do not match count 2, so I want the result to be

-----------------------------------------------
 year | state | count2 | count3    | count4   |
 2014 | NJ    | 12332  | mismatch  | mismatch |

谢谢!

推荐答案

year上的数据框join不适用于您的mapDiffs方法.对于join,您需要在df1和df2中有一个行标识列.

The dataframe join on year won't work for your mapDiffs method. You need a row-identifying column in df1 and df2 for the join.

import org.apache.spark.sql.functions._

val df1 = Seq(
  ("2014", "NJ", "12332", "54322", "53422"),
  ("2014", "NJ", "12332", "53255", "55324"),
  ("2015", "CO", "12332", "53255", "55324"),
  ("2015", "MD", "14463", "76543", "64524"),
  ("2016", "CT", "14463", "76543", "66433"),
  ("2016", "CT", "55325", "76543", "66433")
).toDF("year", "state", "count2", "count3", "count4")

val df2 = Seq(
  ("2014", "NJ", "12332", "54322", "53422"),
  ("2014", "NJ", "12332", "53255", "125"),
  ("2015", "CO", "12332", "53255", "55324"),
  ("2015", "MD", "533",   "75",    "64524"),
  ("2016", "CT", "14463", "76543", "66433"),
  ("2016", "CT", "55325", "76543", "66433")
).toDF("year", "state", "count2", "count3", "count4")

如果在join的数据框中已经有一个行标识列(例如,rowId),请跳过此操作:

Skip this if you already have a row-identifying column (say, rowId) in the dataframes for thejoin:

import org.apache.spark.sql.Row
import org.apache.spark.sql.types._

val rdd1 = df1.rdd.zipWithIndex.map{
  case (row: Row, id: Long) => Row.fromSeq(row.toSeq :+ id)
}
val df1i = spark.createDataFrame( rdd1,
  StructType(df1.schema.fields :+ StructField("rowId", LongType, false))
)

val rdd2 = df2.rdd.zipWithIndex.map{
  case (row: Row, id: Long) => Row.fromSeq(row.toSeq :+ id)
}
val df2i = spark.createDataFrame( rdd2,
  StructType(df2.schema.fields :+ StructField("rowId", LongType, false))
)

现在,定义mapDiffs并将其按rowId联接数据框后将其应用于选定的列:

Now, define mapDiffs and apply it to the selected columns after joining the dataframes by rowId:

def mapDiffs(name: String) =
  when($"l.$name" === $"r.$name", $"l.$name").otherwise("no").as(name)

val cols = df1i.columns.filter(_.startsWith("count")).toList

val result = df1i.as("l").join(df2i.as("r"), "rowId").
  select($"l.rowId" :: $"l.year" :: cols.map(mapDiffs): _*)

// +-----+----+------+------+------+
// |rowId|year|count2|count3|count4|
// +-----+----+------+------+------+
// |    0|2014| 12332| 54322| 53422|
// |    5|2016| 55325| 76543| 66433|
// |    1|2014| 12332| 53255|    no|
// |    3|2015|    no|    no| 64524|
// |    2|2015| 12332| 53255| 55324|
// |    4|2016| 14463| 76543| 66433|
// +-----+----+------+------+------+

请注意,样本结果中df1和df2之间的差异似乎不止3个no点.我已经修改了样本数据,使这三个点唯一不同.

Note that there appears to be more discrepancies between df1 and df2 than just the 3 no-spots in your sample result. I've modified the sample data to make those 3 spots the only difference.

这篇关于如何在scala中比较两个数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-14 11:12