确定两个矩形彼此重叠

确定两个矩形彼此重叠

本文介绍了确定两个矩形彼此重叠?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我试图写一个C ++程序,它从用户以下投入兴建的矩形(2至5之间):高度,宽度,X POS机,Y-POS。所有这些矩形的将存在平行于x和y轴,即所有它们的边缘将具有0或无穷大斜坡

我试图执行什么是提到在这个的问题,但我没有很多的运气。

我目前的实现执行以下操作:

  //获取所有顶点的矩形1,并将其存储在一个数组 - > arrRect1
//点​​1个:arrRect1 [0],点1 Y:arrRect1 [1]等等...
//获取数组中的所有顶点的矩形2,并将其存储 - > arrRect2

//旋转的点边缘,矩形1
INT rot_x,rot_y;
rot_x = -arrRect1 [3];
rot_y = arrRect1 [2];
//在旋转的边缘点
INT pnt_x,pnt_y;
pnt_x = arrRect1 [2];
pnt_y = arrRect1 [3];
//测试点,距离矩形2
INT tst_x,tst_y;
tst_x = arrRect2 [0];
tst_y = arrRect2 [1];

int值;
值=(rot_x *(tst_x  -  pnt_x))+(rot_y *(tst_y  -  pnt_y));
COUT<< 值:<<值;
 

不过,我不太清楚,如果(一)我已经实现了我的算法联系到正确的,或者如果我这样做究竟是如何相互preT呢?

有什么建议?

解决方案

 如果(RectA.Left< RectB.Right和放大器;&安培; RectA.Right> RectB.Left&安培; &放大器;
    RectA.Bottom< RectB.Top&功放;&安培; RectA.Top> RectB.Bottom)
 

或者使用笛卡尔坐标...

 如果(RectA.X1< RectB.X2和放大器;&安培; RectA.X2> RectB.X1和放大器;&安培;
    RectA.Y1< RectB.Y2&功放;&安培; RectA.Y2> RectB.Y1)
 

假设你有矩形A和B.矩形证据是矛盾的。那四个条件保证任何一个没有重叠可以存在

  • COND1。如果A的左边缘到B的右边缘的右侧,        - 那么A是完全到右乙
  • COND2。如果A的右边缘是到B的左边缘的左侧,        - 那么A是完全向左中乙
  • Cond3。如果A的顶部边缘低于B的底部边缘,        - 那么A是完全下文B
  • Cond4。如果A的底部边缘高于B的顶部边缘,        - 那么A是完全以上乙

所以条件的非重叠

 COND1或COND2或者Cond3或者Cond4 

因此​​,一个充分条件重叠是相反的(德摩根)

不COND1而不是COND2和不Cond3而不是Cond4 

这是等价于:

  • 系统的左边缘到左乙的右边缘,和​​
  • A的右边缘到B的左边缘的权利,
  • 系统的顶级高于B的底部,和
  • 在下文B评出A的底部

注1 :这是相当明显的同样的原理可以扩展到任何数量的尺寸
注意2 :这也应该是相当明显的计算只是一个像素的重叠,改< 和/或> 上边界为< = > =

I am trying to write a C++ program that takes the following inputs from the user to construct rectangles (between 2 and 5): height, width, x-pos, y-pos. All of these rectangles will exist parallel to the x and the y axis, that is all of their edges will have slopes of 0 or infinity.

I've tried to implement what is mentioned in this question but I am not having very much luck.

My current implementation does the following:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2];
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;

However I'm not quite sure if (a) I've implemented the algorithm I linked to correctly, or if I did exactly how to interpret this?

Any suggestions?

解决方案
if (RectA.Left < RectB.Right && RectA.Right > RectB.Left &&
    RectA.Bottom < RectB.Top && RectA.Top > RectB.Bottom)

or, using Cartesion coordinates...

if (RectA.X1 < RectB.X2 && RectA.X2 > RectB.X1 &&
    RectA.Y1 < RectB.Y2 && RectA.Y2 > RectB.Y1)

Say you have Rect A, and Rect B.Proof is by contradiction. Any one of four conditions guarantees that no overlap can exist:

  • Cond1. If A's left edge is to the right of the B's right edge, - then A is Totally to right Of B
  • Cond2. If A's right edge is to the left of the B's left edge, - then A is Totally to left Of B
  • Cond3. If A's top edge is below B's bottom edge, - then A is Totally below B
  • Cond4. If A's bottom edge is above B's top edge, - then A is Totally above B

So condition for Non-Overlap is

Cond1 Or Cond2 Or Cond3 Or Cond4

Therefore, a sufficient condition for Overlap is the opposite (De Morgan)

Not Cond1 And Not Cond2 And Not Cond3 And Not Cond4

This is equivalent to:

  • A's Left Edge to left of B's right edge, and
  • A's right edge to right of B's left edge, and
  • A's top above B's bottom, and
  • A's bottom below B's Top

Note 1: It is fairly obvious this same principle can be extended to any number of dimensions.
Note 2: It should also be fairly obvious to count overlaps of just one pixel, change the < and/or the > on that boundary to a <= or a >=.

这篇关于确定两个矩形彼此重叠?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-14 11:01