本文介绍了tf.variable 在 TensorFlow 中是可训练的是什么意思的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

当我阅读 global_step 的文档时,我想到了这个问题.这里明确声明 global_step 不可训练.

This question came to me when I read the documentation of global_step.Here it explicitly declares global_step is not trainable.

global_step_tensor = tf.Variable(10, trainable=False, name='global_step')

sess = tf.Session()

sess = tf.Session()

print('global_step: %s' % tf.train.global_step(sess, global_step_tensor))

print('global_step: %s' % tf.train.global_step(sess, global_step_tensor))

根据我的理解,可训练意味着可以在 sess.run() 期间更改该值.我试图将它声明为可训练和不可训练并得到相同的结果.所以我不明白为什么我们需要宣布它不可训练.

From my understanding, trainable means that the value could be changed during sess.run(). I have tried to declare it both trainable and non-trainable and got the same results. So I didn't understand why we need to declare it not trainable.

我阅读了 trainable 的文档,但不太明白.

I read the documentation of trainable but didn't quite get it.

所以我的问题是:

  1. 在 sess.run() 期间是否可以更改不可训练的变量值,反之亦然?
  2. 使变量不可训练有什么意义?

推荐答案

那不是可训练变量的定义.任何变量都可以在 sess.run() 期间修改(这就是为什么它们是变量而不是常量).

That is not the definition of a trainable variable. Any variable can be modified during a sess.run() (That's why they are variables and not constants).

可训练变量和不可训练变量之间的区别用于让 Optimizer 知道他们可以对哪些变量起作用.定义 tf.Variable() 时,设置 trainable=True(默认值)会自动将变量添加到 GraphKeys.TRAINABLE_VARIABLES 集合.在训练期间,优化器通过 tf.trainable_variables() 获取该集合的内容,并将训练应用于所有这些.

The distinction between trainable variables and non-trainable variables is used to let Optimizers know which variables they can act upon.When defining a tf.Variable(), setting trainable=True (the default) automatically adds the variable to the GraphKeys.TRAINABLE_VARIABLES collection.During training, an optimizer gets the content of that collection via tf.trainable_variables() and applies the training to all of them.

不可训练变量的典型示例是 global_step,因为它的值确实会随时间变化(通常在每次训练迭代时 +1),但您不想应用优化算法.

The typical example of a non-trainable variable is global_step, because its value does change over time (+1 at each training iteration, typically), but you don't want to apply an optimization algorithm to it.

这篇关于tf.variable 在 TensorFlow 中是可训练的是什么意思的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-21 02:48