本文介绍了如何在 pandas 中合并/合并列?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个(示例)数据框,其中包含4列:
I have a (example-) dataframe with 4 columns:
data = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
'B': [42, 52, np.nan, np.nan, np.nan, np.nan],
'C': [np.nan, np.nan, 31, 2, np.nan, np.nan],
'D': [np.nan, np.nan, np.nan, np.nan, 62, 70]}
df = pd.DataFrame(data, columns = ['A', 'B', 'C', 'D'])
A B C D
0 a 42.0 NaN NaN
1 b 52.0 NaN NaN
2 c NaN 31.0 NaN
3 d NaN 2.0 NaN
4 e NaN NaN 62.0
5 f NaN NaN 70.0
我现在想将B,C和D列合并/合并到新的E列,如本例所示:
I would now like to merge/combine columns B, C, and D to a new column E like in this example:
data2 = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
'E': [42, 52, 31, 2, 62, 70]}
df2 = pd.DataFrame(data2, columns = ['A', 'E'])
A E
0 a 42
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70
我在此处发现了一个非常相似的问题,但这在列A的末尾添加合并的列B,C和D:
I found a quite similar question here but this adds the merged colums B, C, and D at the end of column A:
0 a
1 b
2 c
3 d
4 e
5 f
6 42
7 52
8 31
9 2
10 62
11 70
dtype: object
感谢您的帮助.
推荐答案
选项1
使用assign
和drop
Option 1
Using assign
and drop
In [644]: cols = ['B', 'C', 'D']
In [645]: df.assign(E=df[cols].sum(1)).drop(cols, 1)
Out[645]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
选项2
使用赋值和drop
Option 2
Using assignment and drop
In [648]: df['E'] = df[cols].sum(1)
In [649]: df = df.drop(cols, 1)
In [650]: df
Out[650]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
选项3 最近,我喜欢第3个选项.
使用groupby
Option 3 Lately, I like the 3rd option.
Using groupby
In [660]: df.groupby(np.where(df.columns == 'A', 'A', 'E'), axis=1).first() #or sum max min
Out[660]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
In [661]: df.columns == 'A'
Out[661]: array([ True, False, False, False], dtype=bool)
In [662]: np.where(df.columns == 'A', 'A', 'E')
Out[662]:
array(['A', 'E', 'E', 'E'],
dtype='|S1')
这篇关于如何在 pandas 中合并/合并列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!