本文介绍了Spark中的迭代缓存与检查点的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我在Spark上运行了一个迭代应用程序,并将其简化为以下代码:

I have an iterative application running on Spark that I simplified to the following code:

var anRDD: org.apache.spark.rdd.RDD[Int] = sc.parallelize((0 to 1000))
var c: Long = Int.MaxValue
var iteration: Int = 0
while (c > 0) {
    iteration += 1
    // Manipulate the RDD and cache the new RDD
    anRDD = anRDD.zipWithIndex.filter(t => t._2 % 2 == 1).map(_._1).cache() //.localCheckpoint()
    // Actually compute the RDD and spawn a new job
    c = anRDD.count()
    println(s"Iteration: $iteration, Values: $c")
}

后续作业中的内存分配将如何处理?

What happens to the memory allocation within consequent jobs?

  • 当前anRDD是替代"先前的还是全部保留在内存中?从长远来看,这可能会引发一些内存异常
  • localCheckpointcache是否具有不同的行为?如果使用localCheckpoint代替cache,因为localCheckpoint会截断RDD世系,那么我希望以前的RDD会被覆盖
  • Does the current anRDD "override" the previous ones or are they all kept into memory? In the long run, this can throw some memory exception
  • Do localCheckpoint and cache have different behaviors? If localCheckpoint is used in place of cache, as localCheckpoint truncates the RDD lineage, then I would expect the previous RDDs to be overridden

推荐答案

不幸的是,Spark不适用于此类情况.

Unfortunately seems that Spark is not good for things like that.

您的原始实现方式不可行,因为在每次迭代中,较新的RDD都会对较旧的RDD进行内部引用,因此所有RDD都会堆积在内存中.

Your original implementation is not viable because on each iteration the newer RDD will have an internal reference to the older one so all RDDs pile up in memory.

localCheckpoint是您要达到的目标的近似值.它确实截断了RDD的沿袭,但您失去了容错能力.该方法的文档中已明确说明.

localCheckpoint is an approximation of what you are trying to achieve. It does truncate RDD's lineage but you lose fault tolerance. It's clearly stated in the documentation for this method.

checkpoint也是一个选项.这是安全的,但每次迭代都会将数据转储到hdfs.

checkpoint is also an option. It is safe but it would dump the data to hdfs on each iteration.

考虑重新设计方法.这样的骇客迟早会咬人.

Consider redesigning the approach. Such hacks could bite sooner or later.

这篇关于Spark中的迭代缓存与检查点的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-14 03:36