问题描述
我有这两个数组/矩阵,它们代表2个离散随机变量X和Y的联合分布.我以这种格式表示它们是因为我想使用numpy.cov
函数,而该格式似乎是cov
要求.
I have these two arrays/matrices which represent the joint distribution of 2 discrete random variables X and Y. I represented them in this format because I wanted to use the numpy.cov
function and that seems to be the format cov
requires.
https://docs.scipy .org/doc/numpy-1.15.0/reference/generation/numpy.cov.html
joint_distibution_X_Y = [
[0.01, 0.02, 0.03, 0.04,
0.01, 0.02, 0.03, 0.04,
0.01, 0.02, 0.03, 0.04,
0.01, 0.02, 0.03, 0.04],
[0.002, 0.002, 0.002, 0.002,
0.004, 0.004, 0.004, 0.004,
0.006, 0.006, 0.006, 0.006,
0.008, 0.008, 0.008, 0.008],
]
join_probability_X_Y = [
0.01, 0.02, 0.04, 0.04,
0.03, 0.24, 0.15, 0.06,
0.04, 0.10, 0.08, 0.08,
0.02, 0.04, 0.03, 0.02
]
如何根据给定的X和Y的联合分布来计算X(以及Y)的边际分布?我的意思是...有什么可以调用的库方法吗?
How do I calculate the marginal distribution of X (and also of Y) from the so given joint distribution of X and Y? I mean... is there any library method which I can call?
我想得到例如像这样:
X_values = [0.002, 0.004, 0.006, 0.008]
X_weights = [0.110, 0.480, 0.300, 0.110]
我想避免自己对边际分布的计算进行编码.
我认为已经有了一些Python库方法.
这是什么,给定我的数据怎么称呼它?
I want to avoid coding the calculation of the marginal distribution myself.
I assume there's already some Python library method for that.
What is it and how can I call it given the data I have?
推荐答案
您可以使用边距:
import numpy as np
from scipy.stats.contingency import margins
join_probability_X_Y = np.array([
[0.01, 0.02, 0.04, 0.04],
[0.03, 0.24, 0.15, 0.06],
[0.04, 0.10, 0.08, 0.08],
[0.02, 0.04, 0.03, 0.02]
])
x, y = margins(join_probability_X_Y)
print(x.T)
输出
[[0.11 0.48 0.3 0.11]]
这篇关于从Python中的联合分布计算边际分布的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!